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I Argyres-Seiberg Duality

Philip Argyres & Nathan Seiberg 0711.0054
g[{d;}] w/ r ~ g[{d;}] w/ (Ff & SCFT[d:h])

e LHS: There is a gauge group g with matter charged in representa-
tions r.

e RHS: Thereis arank 1 SCFT with mass dimension of the Coulomb

branch moduli d and flavor symmetry h. Then g C h is gauged with
matter charged in representations r.
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Philip Argyres & JRW 0712.2028

e [ he spectrum of dimensions of Coulomb branch vevs:

{di} = {di} v {d}.

e [ he flavor symmetry algebras:

~

f =171 @& H.

e [ he beta function from weakly gauging the flavor symmetry:
T(r) = T@&) + kf) 'IH<—>h-

e T he number of marginal couplings:
2-T(g) = T(r) + kb‘I§<_>r;-



cont’d

e The contribution to the u(1)g central charge (for the SCFT):
3/2-krp = 24-c = 4-(lg| — lg) + (] = [r]).

e The contribution to the a conformal anomaly (for the SCFT):
48-a = 10-(lg| — la) + (x| — [&]).

e T he existence of a global Z»-obstruction to gauging the flavor sym-
metry.



a and ¢ anomalies

e In Lagrangian theories, the a and ¢ anomalies can be computed by
t' Hooft anomaly matching:

4-(2-a — ¢ = |gl = Xi(2-d; — 1).

e If we look back at the criteria the SCFT satisfies a similar relation:
4.(2-a — ¢c) = (2-d — 1).

e Shapere and Tachikawa have given a proof that this formula holds
for a large class of N =2 SCFT's in 0804.1957.



Zo-0obstruction

E. Witten, An su(2) Anomaly, Phys.Lett.B117:324-3278,1982

Go w/ 8-7 ~ su(2) w/ (2@ SCFT[6:sp(5)])

e LHS: The 7 of Gy is real = the flavor symmetry is sp(4)
when the sp(4) is gauged there is a Zy-obstruction because the 8 is

pseudoreal.

e RHS:The su(2) has an anomaly related to the single 2 =
sp(5) must posses a Zo-obstruction to gauging in order to cancel
this since the LHS is anomaly free =
this gives sp(4) a Z»-obstruction since It spsy = 1 for f either

su(2) or sp(4).



I11 1 Marginal Operator
| g w/ r = g w/r ® SCFTI[d:b]
1. | sp(3) 144 11-6 = sp(2) [6 : Es]
2. | su(6) 2001501505-605-6 = su(5) 5H5H5410010 [6: Eg]
3. | s0(12) 3-32932¢4-12 = so(11) 3-32 [6 : Fs]
4. | G- 8-7 = su(2) 2 [6 : sp(5)]
5. | so(7) 4.806-7 = sp(2) 5-4 [6 : sp(5)]
6. | su(6) 2192142006D6 = su(5) 10 10 [6 : sp(5)]
7. | sp(2) 12-4 = su(2) [4 . E7]
8. | su(4) 2.606-496-4 = su(3) 2.3¢2-3 [4 : E7]
9. | so(7) 6-8p4-7 = Go 4.7 [4 . E7]
10. | so(8) 6-8®4-8@®2-8" = so(7) 6-8 [4 : E/]
11. | so(8) 6-896-8 = Go [4: E7] ® [4 : E7]
12. | sp(2) 6-5 = su(2) [4:sp(3) ®su(2)]
13. | sp(2) 4.494-5 = su(2) 3.2 [4 :sp(3) ®su(2)]
14. | su(4) 1001002-492-4 = su(3) 393 [4 :sp(3) ®su(2)]
15. | su(3) 6-306-3 = su(2) 2.2 [3: Es]
16. | su(4) 4.604-404-4 = sp(2) 6-4 [3: Fs]
17. | su(3) 3639656 = su(2) n-2 [3: 5]

® predicted dualities with one marginal operator




2 Marginal Operators

| g w/ r = g w/ T ® SCFTI[d : b]

18. | su(2)®su(3) 2(2,1)®(2,393)®4(1,393) = su()@su(2) 2(2,1)®2(1,2) [3: Es]

19. | su(2)®sp(2) 2(2,4)9 8-(1 4 = su(2) ®su(2) [4 : E7]

20. | su(2)®sp(2) 3:(2,1)® (2,5 @ 4-(1,5) = su(2)®su(2) 3(2,1) [4:sp(3)®su(2)]

21. | su(2) & G2 2o 2,7 ®6-(1,7) = su(2)osu(2) ((2,1)®(1,2) [6:sp(H)]

22. | su(3)dsu(3) 21(3,3)d2(3,3) = su(2)@su(3) 2(2,1) [3 : Eg]

23. | su(3) ®su(3) (393,393) = su(2)®su(3d) 2(2,1) [3: Fs]

24. | su(3) @su3) 3:(393,1)®(3,3) 3 (3,3) = su(2)esu(3d) 2(2,1) [3: Fs]
® 3-(1,393) ® 3-(1,333)

25. | su(3)®sp(2) (3®3,1) @ (3@3,5) = su(2)@sp(2) 2(2,1) [3: Eg]

3 3 = su(3)@su(2) (3®3,1)[4:sp(3)Bsu(2)]

26. | su(3)®sp(2) 2:(3¢3,1) P (3383,4) @ 6-(1,4) = su(2Q)@sp(2) 2(2,1)®6-(1,4) [3: Es]

= su(3)dsu(2) 2(393,1) [4 : E7]

27. | sp(2) ®sp(2) 2:(5,1)®(5,4) 7-(1,4) = su(2)@sp(2) 7-(1,4) [4:sp(3)Psu(2)]

= sp(2)dsu(2) 2:(5,1) [4 : E7]

28. | sp(2)®sp(2) 4-(4,1)®2(4,4) ®4-(1,4) = su(2) ®sp(2) 4-(1,4) [4 @ E7]

= sp(2)dsu(2) 5(4,1)®(1,2)[6:sp(5)]

® predicted dualities with two marginal operators




New SCFT's

d b ky, 3/2-kp| 48-a | Zp anomaly?
6 Eg 12 124 190 no

6 sp(5) 7 98 164 yes

4 E 8 76 118 no

4| sp(3) @su(2) 5®8 58 100 yes @ no

3 Eg §) 52 82 no
3|2<rank(h) <6 | (8—n)/Igy2)y | 38-2n | 68-2n ?

e From arguments found in 0712.2028 we can restrict rank(h) = 2
which requires n = 2 in order to match the flavor symmetries.

e [ he flavor central charges, kh, were confirmed for Eg, E7, and
Eg through an F-theory calculation by Aharony and Tachikawa in
0711.4532.



IV Seiberg-Witten Theory

The physics is encoded by:

e [ he Seiberg-Witten curve:
y2 — 333 _I_ f(u,mz)a: + g(uamz)

e and the Seiberg-Witten 1-form: gy,
Oudgyy = %@f + 8.(x)dz.

The charged states of the theory are encoded by:

e u(1l) charges of a physical state are given by the homology class of
a cycle, v = nela] + nm[B3] (when m; = 0).

e [ hese states have central charge, Z = §7 AST -

10



Seiberg-Witten Theory(Singularities)

T he singularities of the Seiberg-Witten curve:

e are located at A = 4. f3 4+ 27.4% = 0.

e If m; =0 then A ~u™.

e [ he singularities physically correspond to a breakdown of

the low-energy description = charged states are becoming massless
at this point in moduli space.
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Seiberg-Witten Theory(Singularities with m; = 0)

O

d

12



Seiberg-Witten Theory(m; #= 0)

e When mass parameters are turned on they appear in the curve in
the form of invariants of the weyl group of the flavor symmetry.

o A=u"+ Ppoy({miDu" L + .+ Py (fmid)

e T he factorization of A is related to the flavor symmetry group
through the fact that different flavor symmetries < different factor-
izations of A.
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Seiberg-Witten Theory(Singularities with m; #% 0)
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V The Kodaira Classification

e Kodaira classified the degenerations of holomorphic families of el-
liptic curves over one variable, w.

e [ he classification is of singularities that do not degenerate the holo-
morphic 1-form at the singularity.

e Fixing the holomorphic 1-form, w = %’3, and requiring the singu-

larities occur as v — 0O specifies the curves exactly up to overall
rescalings of wu.

15



The Kodaira Classification

Recall:
e y° = 23 4+ f(wz + g(u)
¢ dAsw = I + Ou(x)dz

e Z = § Asw

It is easy to reproduce Kodaira's classification by a little algebra. For
details see sections 2.2 & 2.3 of hep-th/0504070 by Philip Argyres,
Michael Crescimanno, Alfred Shapere, and JRW.

16



The Kodaira Classification

name | curve A, D(u) D(z)
Eg y2 = ;133 —I— 2u5 ulO 6 10
E7 | y? =23+ u3x 02 4 6
Ee | y* = 2> + u* u® 3 4
Da | y? = 2° + 3ru’s + 2u° ub(r3 +1) 2 2
Hs | y? = a° 4 u? u? 32 1 (D
H> | y2 =23 4+ ux 13 4/3 2/3
Hi |2 =234+ U2 6/5 2/5
Dpsa | y?2 = 23 + 3ux? + 4N2=Ayn-1 nt2(1 4 A200=4)yn=4) 2 5
Apso |2 = (z — 1) (2* + A—(HDynt1)  gntl(1 4 A=t D ynt1) 1 0

e [ he result is two infinite series and seven

exceptional” curves.

e A is the UV strong coupling scale and 7 is the marginal gauge coupling.

17



The Kodaira Classification(Complex Deformations)

e [ he general mass deformations of these curves correspond to com-
plex structure deformations that are subleading singularities as u —
0.

f
Es y2 =z + fE(M2u3 + A]\48UJ2 + Misu + MQO) + (2U5 + ]\412103 + M18’LL2 + Mosu + M30) Eg
E7 | y? = 23 4+ z(uv® + Mgu 4+ M12) + (Mou®* + Meu® + Miou? + Miau + Misg) E-
Es | y? = 23 + z(Mau? + Msu + Ms) + (u* + Msu? + Mou + Mi2) Es
D4 | y?> = 23 + 2(37u® + Mou + My) + (2u3 + Mau + Me) so(8)
Hs | y* = 2> + x(Myou + M>) + (u* + M3) uz) 2
H»> y2 = o3 + CB(U) + (M2/3u + MQ) u(2)
Hy | y? =2 +a(Mass) + (w) u(1)
Dpsa | y2 = 23 4 3uz?2 + A~ M,z + AN200-D (yn=1 L Mou2 4 - 4 Mo,_») so(2n)
Anzo | ¥? = (z — 1) (@ + A~ D[t 4 Moun~t 4+ Mau 2 + -+ - 4 M,11]) su(n + 1)
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Kodaira Classification(The A,,~o series)

e The curve shown corresponds to a u(l) gauge theory with n + 1
hypermultiplets all of the same charge, +1.

e [ he beta function determines the form of the singularity. Let there
be ng equal mass hypermultiplets with charge +r, then b = Zanarg.

e b=n-+1— A, singularity.

e Since b > 0 these theories are all IR free.

e T his is an example of the theme, singularity < gauge group.
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The Kodaira Classification(The D,, series)

e The curve (for n > 4) written corresponds to an su(2) gauge theory
with 2n half-hypers in the fundamental representation = b = 2(n —
4).

e Again b > 0 so all these theories are IR free.

e There are two types of representations for su(2), the real 2r 4+ 1 and
the pseudoreal 2s.

e [0 avoid anomalies we must have 2n, of each real representation
and any number ms of the pseudoreal such that %Zsmss(llsz — 1) is
even.

o b= %Zrnrr(r +1)2r+1)+ %Zsmss(432 —1)-8

e [ he flavor symmetry that corresponds to this value of the beta
function is ®rsp(n,) @s so(ms).

20



The Kodaira Classification(Vanishing beta function)

There are two ways to make b = 0 for the su(2) beta function.

e [ he first case is m1 = 8 and all other zero. This has a flavor
symmetry of so(8).

e T his curve is the fully mass deformed D, curve.

e T he second case is n1 = 1 and all other zero. This has a flavor
symmetry of sp(1) and enhances the susy to N = 4.

e The curve for the second case is y? = [[;(x — eju — e?M>).
o N\ = Hz<j(€l — €j)2(u + (e’i + ej)MQ)Q

21



The Kodaira Classification(Asymptotically free (or AF) theories)

These come from looking at su(2) gauge theories with b < 0.

e If we put in only fundamental matter: b = mq1 — 8.

e mq IS the number of half-hypers and to avoid anomalies mq must
be even = mq = 2,4,06.

e When all the masses are taken to be the same we get the Hj 3
mass deformed curves, respectively.

22



The Kodaira Classification(Eg 7 g mass deformations)

The E6,7,8 curves correspond to strongly interacting fixed points.

e T here existence was suggested from stringy constructions.

e [ he maximal mass deformations were worked out by Minahan and
Nemeschansky in:

Nuclear Physics B 482 (1996) 142-152 and
Nuclear Physics B 489 (1997) 24-46.

e Evidence for the existence of hew mass deformations was found by
Philip Argyres & JRW in 0712.2028.
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VI Central Charges and Curves

Shapere and Tachikawa 0804.1957

T he twisted version of Seiberg-Witten theory relates the anomalies and
central charges to:

e [ he mass dimension of the vev on moduli space,

e the # of neutral hypermultiplets on moduli space and

e the # of singular points of the Seiberg-Witten curve.

24



Central Charges and Curves (Twisted PI)

f[du] [dq] AXBJCne_Slow—energy
e Y is the Euler characteristic.
e o IS the signature.

e n IS an instanton number.

ou;
o A2 = (et[%W
[80,]

e B® = Radical[A]

25



Central Charges and Curves (master equations)

e [ he scaling behavior of the measure determines the R-charge of the
states becoming massless at a singularity.

e The normalization is: R(x) = 2-D(%).

e 48-a = 12-R(A) + 8 -R(B) + 10-r + 2-h

e24.c = 8-R(B) + 4-r + 2-h

e 4(2-a—c)=2-R(A)+r=3I_12-(d—-1)+r=>7_112-d;—1)

r = the complex dimension of moduli space

h = the # of massless neutral hypermultiplets

26



Central Charges and Curves (r = 1)
e R(A) = d — 1
e R(B) = ;-Z-d
e / = The # of singular points of the Seiberg-Witten curve.
e24.c = 2.-Z-d + 4 + 2-h

® ky = 2-d — h

27



Central Charges and Curves(the unknown solution)

e 15=3-Z+h

e — %> =6-h
su(2)—bh

e The only rank 2 Lie Algebras are su(2) @& su(2), su(3), sp(2), and
G2

28



Central Charges and Curves (Results)

d § Z | 2-h rep.’s
6 Eg 10 0 -

6 sp(5) 7 10 10(s)
4 E~ 9 0 -

4 1sp(3)@su(2)| 6 |(6,0)]6d1(s)
3 Eg S 0 -

3| rank(h) =2 14,5| 6,0 ?

Since there are no neutral hypermultiplets on the LHS of
the equivalence = the neutral hypermultiplets on the RHS

must be charged under the flavor symmetry.

29



VII Zo>-obstruction Revisited

e There is a Z»-obstruction for the sp(5) and sp(3) factors.

e T his obstruction comes from the neutral hypermultiplet charged in
a pseudoreal representation.

e Consider our old example in this new light:

Gy w/ 8-7 ~ su(2) w/ (2@ SCFT[6:sp(5)])
su(2) ®sp(4) C sp(5)
(2,1)®(1,8) = 10

30



VIII Constructing New Seiberg-Witten Curves

e [ he work of Shapere and Tachikawa specifies possible forms of the
discriminant of the Seiberg-Witten curves.

e [ he discriminants are determined by partitioning the total order of
the singularity at m; = 0 into a Z-tuple of integers.

31



Constructing New Seiberg-Witten Curves

There are 4 singular points and 8 singularities.

o A~ (u4.)°W3+..)

o A~ (u4 . )% u4+.)%w?4+..)

o A~ (u4.)3u4+ . )W+ ..)?

o A~ (u?4 .32+ )

o A~ (ut4..)°

A systematic search for su(3) reveals 2 solutions. We need to carryout
a systematic search for su(2) @ su(2), Go, and sp(2).

32



Constructing New Seiberg-Witten Curves (15 consistent su(3) solution)
o y2 = 2343Noz[u?+ (1+v)N3+ N3]+ [u* +u?((1+2v)N5+2N2) +
v(1+ v)N8 + (1 + 2v)NSNZ + N3]

e A= -27[u?*+ (1+ I/)N23 + Ng]Q[UQ + (2 + V)N23 + N32]2

e Upon constructing the SW 1-form for this curve we find that it is
impossible.
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Constructing New Seiberg-Witten Curves (2"? consistent su(3) solution)

o y° =23 + u[3Nox(u — 4N3) + u3 — 12u° N3 — u(N3 — 48N3) — 64 N3]

o A = —-27u?[u3 — 12u?N3 + u(N3 + 48N3) — 64N3]?

e \When we compute the SW 1-form we find that it is identical zero.
Therefore this is not a valid solution.

34



Constructing New Seiberg-Witten Curves

There are 5 singular points and 8 singularities.

o A~ (u4 . )% u*+.)

o A~ (u4.)3u4+.)%0W34+..)

o A~ (u34+.)2%20w2+.)

We need to carryout a systematic search for su(2) @ su(2), su(3), Go,
and sp(2).

35



Constructing New Seiberg-Witten Curves (sp(3) & su(2))

There are 6 singular points and 9 singularities.

o A~ (u+.)%w?+..)

o A~ (u4.)3u4+.)%20W*4+ )

o A~ (u34+.)20w3+4+.)

A systematic search reduces the problem to solving on the order of 800
polynomial relationships amongst 160 unknowns.
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Constructing New Seiberg-Witten Curves (sp(5))

There are 7 singular points and 10 singularities

e A~ (u+.)%ub+..)

o A~ (u4.)3u4+.)%2w>+..)

o A~ (u34+.)20*+ )

A systematic search was not attempted for this case because of the
outcome found on the previous slide.
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IX Isogenies

An isogeny is a many-to-one holomorphic map that preserves the holo-
morphic 1-form. There are three traditional presentations of elliptic
curves which are related by isogenies.

e Legendre: n? =¢34+ feE+g

e Jacobi: y2 — 2% 4 ax? + 3

e Hessian: ~ = y3 + dxy + 3

Where f, g, a, B, v, and ¢ are all functions of w.
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[sogenies(2-isogeny)

The map from the Jacobi form to the Legendre form is a 2-isogeny.

e y=n(t—3a)2
o A=p%(a”—4p)

e The condition for a curve to have a 2-isogeny is that D(8) = kD(u)
where k € ZT.

The Ho, Dy, and E7 curves have a 2-isogenous form. The H, isogenous
curve can only have a u(1) flavor symmetry.
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[sogenies(2-isogeny of Dy)
e a=1u+ Mo
e 5=u?+ M,
o A = (u?+ My)?((72 — 4)u? 4 27 Mou + (M3 — 4My))

e If we take the special case My = ﬁMg then we get
1 1
A= (12— 4)(u+ 55 M2)?(u— (72 = 4) 2 M2)?(u+ (12 — 4) 2 M>)?

This is the same discriminant as the N = 4 solution.
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[sogenies(2-isogeny of E7)

o o = Mou + Mg

o 3=u34+ Mgu+ Mo

e By comparing the dimensions of the complex parameters to the
dimensions of the Casimirs of Lie Algebras the maximal flavor sym-
metry is Fy.

e A systematic computation of the SW 1-form still needs to be per-
formed to see what are the possible flavor symmetries.
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Isogenies(3-isogeny)

The map from the Hessian form to the Legendre form is a 3-isogeny.
_1
oz =—(¢£— 56D (n+ 306 — 503 +7)73
1
o y=(n+ 505 — 156°+7))3

o N\ —= 1—1673(53 — 277)

e [ he condition for a curve to have a 3-isogeny is the same as a for
a 2-isogeny D(v) = kD(u) where k € ZT.

The Hz and Eg curves have a 3-isogenous form. The Hsz isogenous
curve can only have a u(1) flavor symmetry.
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[sogenies(3-isogeny of Eg)

e 0 = M>

o v=u?+ Mg

e By explicitly computing the Seiberg-Witten 1-form we find that the
flavor symmetry of this curve is G»o.

e [ he discriminant has Z = 4 but it is hard to see how 6 neutral
half-hypers could fit into a representation of G».
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X Future Work

e Try to construct Seiberg-Witten curves for the sp(3) @ su(2) and
sp(5) flavor symmetries. Systematic searches are plagued with tech-
nical difficulties.

e Carryout the remaining systematic searches for the rank 2 flavor
symmetry solutions of the Eg singularity.

e Try to determine the Seiberg-Witten 1-forms and flavor symmetries
for the supposed F; mass deformation of the FE+ singularity.

e [ry to better understand the relationship between isogenies and sub-
maximal mass deformations.
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