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I Argyres-Seiberg Duality

Philip Argyres & Nathan Seiberg 0711.0054

g[{di}] w/ r ' g̃[{d̃i}] w/ (r̃ ⊕ SCFT[d : h])

• LHS: There is a gauge group g with matter charged in representa-

tions r.

• RHS: There is a rank 1 SCFT with mass dimension of the Coulomb

branch moduli d and flavor symmetry h. Then g̃ ⊂ h is gauged with

matter charged in representations r̃.
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II Criteria for Duality

Philip Argyres & JRW 0712.2028

• The spectrum of dimensions of Coulomb branch vevs:

{di} = {d̃i} ∪ {d}.

• The flavor symmetry algebras:

f = f̃ ⊕ H.

• The beta function from weakly gauging the flavor symmetry:

T(r) = T(r̃) + kh · IH↪→h.

• The number of marginal couplings:

2 ·T(g̃) = T(r̃) + kh · Ig̃↪→h.
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Criteria for Duality(cont’d)

• The contribution to the u(1)R central charge (for the SCFT):

3/2 · kR = 24 · c = 4 · (|g| − |g̃|) + (|r| − |r̃|).

• The contribution to the a conformal anomaly (for the SCFT):

48 · a = 10 · (|g| − |g̃|) + (|r| − |r̃|).

• The existence of a global Z2-obstruction to gauging the flavor sym-

metry.
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Criteria for Duality (a and c anomalies)

• In Lagrangian theories, the a and c anomalies can be computed by

t’ Hooft anomaly matching:

4 · (2 · a − c) = |g| =
∑
i(2 · di − 1).

• If we look back at the criteria the SCFT satisfies a similar relation:

4 · (2 · a − c) = (2 · d − 1).

• Shapere and Tachikawa have given a proof that this formula holds

for a large class of N = 2 SCFT’s in 0804.1957.
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Criteria for Duality (Z2-obstruction)

E. Witten, An su(2) Anomaly, Phys.Lett.B117:324-3278,1982

G2 w/ 8 · 7 ' su(2) w/ (2⊕ SCFT[6 : sp(5)])

• LHS: The 7 of G2 is real ⇒ the flavor symmetry is sp(4)

when the sp(4) is gauged there is a Z2-obstruction because the 8 is

pseudoreal.

• RHS:The su(2) has an anomaly related to the single 2 ⇒
sp(5) must posses a Z2-obstruction to gauging in order to cancel

this since the LHS is anomaly free ⇒
this gives sp(4) a Z2-obstruction since If↪→sp(5) = 1 for f either

su(2) or sp(4).
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III Examples of Duality and Results (1 Marginal Operator)

g w/ r = g̃ w/ r̃ ⊕ SCFT [d : h]
1. sp(3) 14⊕ 11 · 6 = sp(2) [6 : E8]
2. su(6) 20⊕ 15⊕ 15⊕ 5 · 6⊕ 5 · 6 = su(5) 5⊕ 5⊕ 10⊕ 10 [6 : E8]
3. so(12) 3 · 32⊕ 32′ ⊕ 4 · 12 = so(11) 3 · 32 [6 : E8]
4. G2 8 · 7 = su(2) 2 [6 : sp(5)]
5. so(7) 4 · 8⊕ 6 · 7 = sp(2) 5 · 4 [6 : sp(5)]
6. su(6) 21⊕ 21⊕ 20⊕ 6⊕ 6 = su(5) 10⊕ 10 [6 : sp(5)]
7. sp(2) 12 · 4 = su(2) [4 : E7]
8. su(4) 2 · 6⊕ 6 · 4⊕ 6 · 4 = su(3) 2 · 3⊕ 2 · 3 [4 : E7]
9. so(7) 6 · 8⊕ 4 · 7 = G2 4 · 7 [4 : E7]

10. so(8) 6 · 8⊕ 4 · 8′ ⊕ 2 · 8′′ = so(7) 6 · 8 [4 : E7]
11. so(8) 6 · 8⊕ 6 · 8′ = G2 [4 : E7]⊕ [4 : E7]
12. sp(2) 6 · 5 = su(2) [4 : sp(3)⊕ su(2)]
13. sp(2) 4 · 4⊕ 4 · 5 = su(2) 3 · 2 [4 : sp(3)⊕ su(2)]
14. su(4) 10⊕ 10⊕ 2 · 4⊕ 2 · 4 = su(3) 3⊕ 3 [4 : sp(3)⊕ su(2)]
15. su(3) 6 · 3⊕ 6 · 3 = su(2) 2 · 2 [3 : E6]
16. su(4) 4 · 6⊕ 4 · 4⊕ 4 · 4 = sp(2) 6 · 4 [3 : E6]
17. su(3) 3⊕ 3⊕ 6⊕ 6 = su(2) n · 2 [3 : h]

• predicted dualities with one marginal operator
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Examples of Duality and Results (2 Marginal Operators)

g w/ r = g̃ w/ r̃ ⊕ SCFT[d : h]

18. su(2)⊕ su(3) 2·(2, 1)⊕ (2, 3⊕3)⊕ 4·(1, 3⊕3) = su(2)⊕ su(2) 2·(2, 1)⊕ 2·(1, 2) [3 : E6]
19. su(2)⊕ sp(2) 2·(2, 4)⊕ 8·(1, 4) = su(2)⊕ su(2) [4 : E7]
20. su(2)⊕ sp(2) 3·(2, 1)⊕ (2, 5)⊕ 4·(1, 5) = su(2)⊕ su(2) 3·(2, 1) [4 : sp(3)⊕su(2)]
21. su(2)⊕G2 (2, 1)⊕ (2, 7)⊕ 6·(1, 7) = su(2)⊕ su(2) (2, 1)⊕ (1, 2) [6 : sp(5)]
22. su(3)⊕ su(3) 2·(3, 3)⊕ 2·(3, 3) = su(2)⊕ su(3) 2·(2, 1) [3 : E6]
23. su(3)⊕ su(3) (3⊕3, 3⊕3) = su(2)⊕ su(3) 2·(2, 1) [3 : E6]
24. su(3)⊕ su(3) 3·(3⊕3, 1)⊕ (3, 3)⊕ (3, 3) = su(2)⊕ su(3) 2·(2, 1) [3 : E6]

⊕ 3·(1, 3⊕3) ⊕ 3·(1, 3⊕3)
25. su(3)⊕ sp(2) (3⊕3, 1)⊕ (3⊕3, 5) = su(2)⊕ sp(2) 2·(2, 1) [3 : E6]

= su(3)⊕ su(2) (3⊕3, 1)[4 : sp(3)⊕su(2)]
26. su(3)⊕ sp(2) 2·(3⊕3, 1)⊕ (3⊕3, 4)⊕ 6·(1, 4) = su(2)⊕ sp(2) 2·(2, 1)⊕ 6·(1, 4) [3 : E6]

= su(3)⊕ su(2) 2·(3⊕3, 1) [4 : E7]
27. sp(2)⊕ sp(2) 2·(5, 1)⊕ (5, 4)⊕ 7·(1, 4) = su(2)⊕ sp(2) 7·(1, 4) [4 : sp(3)⊕su(2)]

= sp(2)⊕ su(2) 2·(5, 1) [4 : E7]
28. sp(2)⊕ sp(2) 4·(4, 1)⊕ 2·(4, 4)⊕ 4·(1, 4) = su(2)⊕ sp(2) 4·(1, 4) [4 : E7]
29. sp(2)⊕G2 5·(4, 1)⊕ (4, 7)⊕ 4·(1, 7) = su(2)⊕G2 4·(1, 7) [4 : E7]

= sp(2)⊕ su(2) 5·(4, 1)⊕ (1, 2)[6 : sp(5)]

• predicted dualities with two marginal operators
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Examples of Duality and Results (New SCFT’s)

d h kh 3/2 · kR 48 · a Z2 anomaly?

6 E8 12 124 190 no
6 sp(5) 7 98 164 yes
4 E7 8 76 118 no
4 sp(3)⊕ su(2) 5⊕ 8 58 100 yes ⊕ no
3 E6 6 52 82 no
3 2 ≤ rank(h) ≤ 6 (8− n)/Isu(2)↪→h 38-2n 68-2n ?

• From arguments found in 0712.2028 we can restrict rank(h) = 2

which requires n = 2 in order to match the flavor symmetries.

• The flavor central charges, kh, were confirmed for E6, E7, and

E8 through an F-theory calculation by Aharony and Tachikawa in

0711.4532.
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IV Seiberg-Witten Theory

The physics is encoded by:

• The Seiberg-Witten curve:

y2 = x3 + f(u,mi)x + g(u,mi)

• and the Seiberg-Witten 1-form: λSW
∂uλSW = dx

y + ∂x(?)dx.

The charged states of the theory are encoded by:

• u(1) charges of a physical state are given by the homology class of

a cycle, γ = ne[α] + nm[β] (when mi = 0).

• These states have central charge, Z =
∮
γ λSW .
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Seiberg-Witten Theory(Singularities)

The singularities of the Seiberg-Witten curve:

• are located at ∆ = 4 · f3 + 27 · g2 = 0.

• If mi = 0 then ∆ ∼ un.

• The singularities physically correspond to a breakdown of

the low-energy description ⇒ charged states are becoming massless

at this point in moduli space.
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Seiberg-Witten Theory(Singularities with mi = 0)

�
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Seiberg-Witten Theory(mi 6= 0)

• When mass parameters are turned on they appear in the curve in

the form of invariants of the weyl group of the flavor symmetry.

• ∆ = un + PD(u)({mi})un−1 + ...+ PnD(u)({mi})

• The factorization of ∆ is related to the flavor symmetry group

through the fact that different flavor symmetries ↔ different factor-

izations of ∆.
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Seiberg-Witten Theory(Singularities with mi 6= 0)
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V The Kodaira Classification

• Kodaira classified the degenerations of holomorphic families of el-

liptic curves over one variable, u.

• The classification is of singularities that do not degenerate the holo-

morphic 1-form at the singularity.

• Fixing the holomorphic 1-form, ω = dx
y , and requiring the singu-

larities occur as u → 0 specifies the curves exactly up to overall

rescalings of u.
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The Kodaira Classification

Recall:

• y2 = x3 + f(u)x + g(u)

• ∂uλSW = dx
y + ∂x(?)dx

• Z =
∮
γ λSW

It is easy to reproduce Kodaira’s classification by a little algebra. For

details see sections 2.2 & 2.3 of hep-th/0504070 by Philip Argyres,

Michael Crescimanno, Alfred Shapere, and JRW.
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The Kodaira Classification

name curve ∆x ∝ D(u) D(x)
E8 y2 = x3 + 2u5 u10 6 10
E7 y2 = x3 + u3x u9 4 6
E6 y2 = x3 + u4 u8 3 4
D4 y2 = x3 + 3τu2x+ 2u3 u6(τ3 + 1) 2 2
H3 y2 = x3 + u2 u4 3/2 1
H2 y2 = x3 + ux u3 4/3 2/3
H1 y2 = x3 + u u2 6/5 2/5

Dn>4 y2 = x3 + 3ux2 + 4Λ−2(n−4)un−1 un+2(1 + Λ−2(n−4)un−4) 2 2
An≥0 y2 = (x− 1)(x2 + Λ−(n+1)un+1) un+1(1 + Λ−(n+1)un+1) 1 0

(1)

• The result is two infinite series and seven ”exceptional” curves.

• Λ is the UV strong coupling scale and τ is the marginal gauge coupling.
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The Kodaira Classification(Complex Deformations)

• The general mass deformations of these curves correspond to com-

plex structure deformations that are subleading singularities as u→
0.

f
E8 y2 = x3 + x(M2u3 +M8u2 +M14u+M20) + (2u5 +M12u3 +M18u2 +M24u+M30) E8

E7 y2 = x3 + x(u3 +M8u+M12) + (M2u4 +M6u3 +M10u2 +M14u+M18) E7

E6 y2 = x3 + x(M2u2 +M5u+M8) + (u4 +M6u2 +M9u+M12) E6

D4 y2 = x3 + x(3τu2 +M2u+M4) + (2u3 + M̃4u+M6) so(8)
H3 y2 = x3 + x(M1/2u+M2) + (u2 +M3) u(3)
H2 y2 = x3 + x(u) + (M2/3u+M2) u(2)
H1 y2 = x3 + x(M4/5) + (u) u(1)

Dn>4 y2 = x3 + 3ux2 + Λ−(n−4)M̃nx+ 4Λ−2(n−4)(un−1 +M2un−2 + · · ·+M2n−2) so(2n)
An≥0 y2 = (x− 1)(x2 + Λ−(n+1)[un+1 +M2un−1 +M3un−2 + · · ·+Mn+1]) su(n+ 1)

(2)
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Kodaira Classification(The An>0 series)

• The curve shown corresponds to a u(1) gauge theory with n + 1

hypermultiplets all of the same charge, ±1.

• The beta function determines the form of the singularity. Let there

be na equal mass hypermultiplets with charge ±ra then b = Σanar2
a .

• b = n+ 1→ An singularity.

• b = Σanar2
a → ⊕au(na) flavor symmetry.

• Since b > 0 these theories are all IR free.

• This is an example of the theme, singularity ⇔ gauge group.
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The Kodaira Classification(The Dn series)

• The curve (for n > 4) written corresponds to an su(2) gauge theory
with 2n half-hypers in the fundamental representation ⇒ b = 2(n−
4).

• Again b > 0 so all these theories are IR free.

• There are two types of representations for su(2), the real 2r + 1 and
the pseudoreal 2s.

• To avoid anomalies we must have 2nr of each real representation
and any number ms of the pseudoreal such that 1

3Σsmss(4s2− 1) is
even.

• b = 4
3Σrnrr(r + 1)(2r + 1) + 1

3Σsmss(4s2 − 1)− 8

• The flavor symmetry that corresponds to this value of the beta
function is ⊕rsp(nr)⊕s so(ms).
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The Kodaira Classification(Vanishing beta function)

There are two ways to make b = 0 for the su(2) beta function.

• The first case is m1 = 8 and all other zero. This has a flavor

symmetry of so(8).

• This curve is the fully mass deformed D4 curve.

• The second case is n1 = 1 and all other zero. This has a flavor

symmetry of sp(1) and enhances the susy to N = 4.

• The curve for the second case is y2 =
∏
i(x− eiu− e2

iM2).

• ∆ =
∏
i<j(ei − ej)2(u+ (ei + ej)M2)2
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The Kodaira Classification(Asymptotically free (or AF) theories)

These come from looking at su(2) gauge theories with b < 0.

• If we put in only fundamental matter: b = m1 − 8.

• m1 is the number of half-hypers and to avoid anomalies m1 must

be even ⇒ m1 = 2,4,6.

• When all the masses are taken to be the same we get the H1,2,3

mass deformed curves, respectively.
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The Kodaira Classification(E6,7,8 mass deformations)

The E6,7,8 curves correspond to strongly interacting fixed points.

• There existence was suggested from stringy constructions.

• The maximal mass deformations were worked out by Minahan and

Nemeschansky in:

Nuclear Physics B 482 (1996) 142-152 and

Nuclear Physics B 489 (1997) 24-46.

• Evidence for the existence of new mass deformations was found by

Philip Argyres & JRW in 0712.2028.
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VI Central Charges and Curves

Shapere and Tachikawa 0804.1957

The twisted version of Seiberg-Witten theory relates the anomalies and

central charges to:

• The mass dimension of the vev on moduli space,

• the # of neutral hypermultiplets on moduli space and

• the # of singular points of the Seiberg-Witten curve.
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Central Charges and Curves (Twisted PI)

∫
[du][dq]AχBσCne−Slow−energy

• χ is the Euler characteristic.

• σ is the signature.

• n is an instanton number.

• A2 = det[∂ui∂aj
]

• B8 = Radical[∆]
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Central Charges and Curves (master equations)

• The scaling behavior of the measure determines the R-charge of the

states becoming massless at a singularity.

• The normalization is: R(?) = 2 ·D(?).

• 48 · a = 12 ·R(A) + 8 ·R(B) + 10 · r + 2 · h

• 24 · c = 8 ·R(B) + 4 · r + 2 · h

• 4(2 · a− c) = 2 ·R(A) + r =
∑r
i=1 2 · (di − 1) + r =

∑r
i=1(2 · di − 1)

r ≡ the complex dimension of moduli space

h ≡ the # of massless neutral hypermultiplets
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Central Charges and Curves (r = 1)

• R(A) = d − 1

• R(B) = 1
4 · Z · d

• Z ≡ The # of singular points of the Seiberg-Witten curve.

• 24 · c = 2 · Z · d + 4 + 2 · h

• kh = 2 · d − h
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Central Charges and Curves(the unknown solution)

• 15 = 3 · Z + h

• 6
Isu(2)↪→h

= 6− h

• The only rank 2 Lie Algebras are su(2) ⊕ su(2), su(3), sp(2), and

G2
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Central Charges and Curves (Results)

d h Z 2 · h rep.’s

6 E8 10 0 -
6 sp(5) 7 10 10(s)
4 E7 9 0 -
4 sp(3)⊕ su(2) 6 (6,0) 6⊕ 1(s)
3 E6 8 0 -
3 rank(h) = 2 4,5 6,0 ?

Since there are no neutral hypermultiplets on the LHS of

the equivalence ⇒ the neutral hypermultiplets on the RHS

must be charged under the flavor symmetry.
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VII Z2-obstruction Revisited

• There is a Z2-obstruction for the sp(5) and sp(3) factors.

• This obstruction comes from the neutral hypermultiplet charged in

a pseudoreal representation.

• Consider our old example in this new light:

G2 w/ 8 · 7 ' su(2) w/ (2⊕ SCFT[6 : sp(5)])

su(2)⊕ sp(4) ⊂ sp(5)

(2, 1)⊕ (1, 8) = 10
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VIII Constructing New Seiberg-Witten Curves

• The work of Shapere and Tachikawa specifies possible forms of the

discriminant of the Seiberg-Witten curves.

• The discriminants are determined by partitioning the total order of

the singularity at mi = 0 into a Z-tuple of integers.
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Constructing New Seiberg-Witten Curves

There are 4 singular points and 8 singularities.

• ∆ ∼ (u+ ...)5(u3 + ...)

• ∆ ∼ (u+ ...)4(u+ ...)2(u2 + ...)

• ∆ ∼ (u+ ...)3(u+ ...)(u2 + ...)2

• ∆ ∼ (u2 + ...)3(u2 + ...)

• ∆ ∼ (u4 + ...)2

A systematic search for su(3) reveals 2 solutions. We need to carryout

a systematic search for su(2)⊕ su(2), G2, and sp(2).
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Constructing New Seiberg-Witten Curves (1st consistent su(3) solution)

• y2 = x3 +3N2x[u2 +(1+ν)N3
2 +N2

3 ]+[u4 +u2((1+2ν)N3
2 +2N2

3 )+

ν(1 + ν)N6
2 + (1 + 2ν)N3

2N
2
3 +N4

3 ]

• ∆ = −27[u2 + (1 + ν)N3
2 +N2

3 ]2[u2 + (2 + ν)N3
2 +N2

3 ]2

• Upon constructing the SW 1-form for this curve we find that it is

impossible.
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Constructing New Seiberg-Witten Curves (2nd consistent su(3) solution)

• y2 = x3 + u[3N2x(u− 4N3) + u3 − 12u2N3 − u(N3
2 − 48N2

3 )− 64N3
3 ]

• ∆ = −27u2[u3 − 12u2N3 + u(N3
2 + 48N2

3 )− 64N3
3 ]2

• When we compute the SW 1-form we find that it is identical zero.

Therefore this is not a valid solution.
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Constructing New Seiberg-Witten Curves

There are 5 singular points and 8 singularities.

• ∆ ∼ (u+ ...)4(u4 + ...)

• ∆ ∼ (u+ ...)3(u+ ...)2(u3 + ...)

• ∆ ∼ (u3 + ...)2(u2 + ...)

We need to carryout a systematic search for su(2) ⊕ su(2), su(3), G2,

and sp(2).
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Constructing New Seiberg-Witten Curves (sp(3)⊕ su(2))

There are 6 singular points and 9 singularities.

• ∆ ∼ (u+ ...)4(u5 + ...)

• ∆ ∼ (u+ ...)3(u+ ...)2(u4 + ...)

• ∆ ∼ (u3 + ...)2(u3 + ...)

A systematic search reduces the problem to solving on the order of 800

polynomial relationships amongst 160 unknowns.
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Constructing New Seiberg-Witten Curves (sp(5))

There are 7 singular points and 10 singularities

• ∆ ∼ (u+ ...)4(u6 + ...)

• ∆ ∼ (u+ ...)3(u+ ...)2(u5 + ...)

• ∆ ∼ (u3 + ...)2(u4 + ...)

A systematic search was not attempted for this case because of the

outcome found on the previous slide.
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IX Isogenies

An isogeny is a many-to-one holomorphic map that preserves the holo-

morphic 1-form. There are three traditional presentations of elliptic

curves which are related by isogenies.

• Legendre: η2 = ξ3 + fξ + g

• Jacobi: y2 = x4 + αx2 + β

• Hessian: γ = y3 + δxy + x3

Where f , g, α, β, γ, and δ are all functions of u.
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Isogenies(2-isogeny)

The map from the Jacobi form to the Legendre form is a 2-isogeny.

• x = (ξ − 1
3α)

1
2

• y = η(ξ − 1
3α)−

1
2

• ∆ = β2(α2 − 4β)

• The condition for a curve to have a 2-isogeny is that D(β) = kD(u)

where k ∈ Z+.

The H2, D4, and E7 curves have a 2-isogenous form. The H2 isogenous

curve can only have a u(1) flavor symmetry.
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Isogenies(2-isogeny of D4)

• α = τu+M2

• β = u2 +M4

• ∆ = (u2 +M4)2((τ2 − 4)u2 + 2τM2u+ (M2
2 − 4M4))

• If we take the special case M4 = 1
4−τ2M

2
2 then we get

∆ = (τ2− 4)(u+ τ
τ2−4

M2)2(u− (τ2− 4)−
1
2M2)2(u+ (τ2− 4)−

1
2M2)2

This is the same discriminant as the N = 4 solution.
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Isogenies(2-isogeny of E7)

• α = M2u+M6

• β = u3 +M8u+M12

• By comparing the dimensions of the complex parameters to the

dimensions of the Casimirs of Lie Algebras the maximal flavor sym-

metry is F4.

• A systematic computation of the SW 1-form still needs to be per-

formed to see what are the possible flavor symmetries.
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Isogenies(3-isogeny)

The map from the Hessian form to the Legendre form is a 3-isogeny.

• x = −(ξ − 1
12δ

2)(η + 1
2(δξ − 1

12δ
3 + γ))−

1
3

• y = (η + 1
2(δξ − 1

12δ
3 + γ))

1
3

• ∆ = 1
16γ

3(δ3 − 27γ)

• The condition for a curve to have a 3-isogeny is the same as a for

a 2-isogeny D(γ) = kD(u) where k ∈ Z+.

The H3 and E6 curves have a 3-isogenous form. The H3 isogenous

curve can only have a u(1) flavor symmetry.
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Isogenies(3-isogeny of E6)

• δ = M2

• γ = u2 +M6

• By explicitly computing the Seiberg-Witten 1-form we find that the

flavor symmetry of this curve is G2.

• The discriminant has Z = 4 but it is hard to see how 6 neutral

half-hypers could fit into a representation of G2.
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X Future Work

• Try to construct Seiberg-Witten curves for the sp(3) ⊕ su(2) and

sp(5) flavor symmetries. Systematic searches are plagued with tech-

nical difficulties.

• Carryout the remaining systematic searches for the rank 2 flavor

symmetry solutions of the E6 singularity.

• Try to determine the Seiberg-Witten 1-forms and flavor symmetries

for the supposed F4 mass deformation of the E7 singularity.

• Try to better understand the relationship between isogenies and sub-

maximal mass deformations.
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