Argyres-Seiberg Duality and New SCFT's

John Wittig
w/ Philip Argyres and Paul Esposito

Outline

Argyres-Seiberg Duality

II Criteria For Duality

Examples of Duality and Results

Review of Seiberg-Witten Theory

The Kodaira Classification

VI Central Charges and Seiberg-Witten Curves

VII
\mathbb{Z}_{2}-Obstruction Revisited

VIII

IX

X
Future Work

I Argyres-Seiberg Duality

Philip Argyres \& Nathan Seiberg 0711.0054

$$
\mathfrak{g}\left[\left\{d_{i}\right\}\right] \quad \mathrm{w} / \mathbf{r} \simeq \tilde{\mathfrak{g}}\left[\left\{\widetilde{d}_{i}\right\}\right] \mathrm{w} /(\widetilde{\mathbf{r}} \oplus \operatorname{SCF} \mathrm{T}[d: \mathfrak{h}])
$$

- LHS: There is a gauge group \mathfrak{g} with matter charged in representations r.
- RHS: There is a rank 1 SCFT with mass dimension of the Coulomb branch moduli d and flavor symmetry \mathfrak{h}. Then $\widetilde{\mathfrak{g}} \subset \mathfrak{h}$ is gauged with matter charged in representations $\widetilde{\mathbf{r}}$.

II Criteria for Duality

Philip Argyres \& JRW 0712.2028

- The spectrum of dimensions of Coulomb branch vevs: $\left\{d_{i}\right\}=\left\{\widetilde{d}_{i}\right\} \cup\{d\}$.
- The flavor symmetry algebras:
$f=\tilde{f} \oplus \mathrm{H}$.
- The beta function from weakly gauging the flavor symmetry: $\mathrm{T}(\mathbf{r})=\mathrm{T}(\tilde{\mathbf{r}})+\mathrm{k}_{\mathfrak{h}} \cdot \mathrm{I}_{\mathrm{H} \hookrightarrow \mathfrak{h}}$.
- The number of marginal couplings:
$2 \cdot \mathrm{~T}(\widetilde{\mathfrak{g}})=\mathrm{T}(\widetilde{\mathbf{r}})+\mathrm{k}_{\mathfrak{h}} \cdot \mathrm{I}_{\mathfrak{\mathfrak { g }} \hookrightarrow \mathfrak{h}}$.

Criteria for Duality(cont'd)

- The contribution to the $u(1)_{R}$ central charge (for the SCFT): $3 / 2 \cdot k_{R}=24 \cdot c=4 \cdot(|\mathfrak{g}|-|\widetilde{\mathfrak{g}}|)+(|\mathbf{r}|-|\widetilde{\mathbf{r}}|)$.
- The contribution to the a conformal anomaly (for the SCFT): $48 \cdot a=10 \cdot(|\mathfrak{g}|-|\widetilde{\mathfrak{g}}|)+(|\mathbf{r}|-|\widetilde{\mathbf{r}}|)$.
- The existence of a global \mathbb{Z}_{2}-obstruction to gauging the flavor symmetry.

Criteria for Duality (a and c anomalies)

- In Lagrangian theories, the a and c anomalies can be computed by t' Hooft anomaly matching:
$4 \cdot(2 \cdot a-c)=|\mathfrak{g}|=\sum_{i}\left(2 \cdot d_{i}-1\right)$.
- If we look back at the criteria the SCFT satisfies a similar relation: $4 \cdot(2 \cdot a-c)=(2 \cdot d-1)$.
- Shapere and Tachikawa have given a proof that this formula holds for a large class of $N=2$ SCFT's in 0804.1957.

Criteria for Duality (\mathbb{Z}_{2}-obstruction)
E. Witten, An su(2) Anomaly, Phys.Lett.B117:324-3278,1982
$G_{2} \mathrm{w} / 8 \cdot 7 \simeq \operatorname{su}(2) \mathrm{w} /(2 \oplus \operatorname{SCF} \mathrm{~T}[6: \mathrm{sp}(5)])$

- LHS: The 7 of G_{2} is real \Rightarrow the flavor symmetry is $\mathrm{sp}(4)$ when the $\operatorname{sp}(4)$ is gauged there is a \mathbb{Z}_{2}-obstruction because the 8 is pseudoreal.
- RHS:The su(2) has an anomaly related to the single $2 \Rightarrow$ sp(5) must posses a \mathbb{Z}_{2}-obstruction to gauging in order to cancel this since the LHS is anomaly free \Rightarrow this gives $\operatorname{sp}(4)$ a \mathbb{Z}_{2}-obstruction since $\mathrm{I}_{f \hookrightarrow \operatorname{sp}(5)}=1$ for f either su(2) or $s p(4)$.

III Examples of Duality and Results (1 Marginal Operator)

	$\mathfrak{g} \quad \mathrm{W} /$	r	$=\mathfrak{g} \mathrm{w} /$	$\widetilde{\mathbf{r}} \oplus$ SCF	[$d: \mathfrak{h}$]
1.	sp(3)	$14 \oplus 11 \cdot 6$	$=\mathrm{sp}(2)$		[6: E_{8}]
2.	su(6)	$\mathbf{2 0} \oplus \mathbf{1 5} \oplus \overline{\mathbf{1 5}} \oplus 5 \cdot \mathbf{6} \oplus 5 \cdot \overline{\mathbf{6}}$	$=\mathrm{su}(5)$	$\mathbf{5} \oplus \overline{\mathbf{5}} \oplus 10 \oplus \overline{\mathbf{1 0}}$	[6: E_{8}]
3.	so(12)	$3 \cdot 32 \oplus 32^{\prime} \oplus 4 \cdot 12$	$=\mathrm{so}(11)$	$3 \cdot 32$	[6: E_{8}]
4.	G_{2}	$8 \cdot 7$	$=\mathrm{su}(2)$	2	[6: sp(5)]
5.	so(7)	$4 \cdot 8 \oplus 6 \cdot 7$	$=\mathrm{sp}(2)$	$5 \cdot 4$	[6: sp(5)]
6.	su(6)	$21 \oplus \overline{\mathbf{2 1}} \oplus \mathbf{2 0} \oplus 6 \oplus \overline{\mathbf{6}}$	$=\mathrm{su}(5)$	$10 \oplus \overline{\mathbf{1 0}}$	[6: sp(5)]
7.	sp(2)	$12 \cdot 4$	$=\mathrm{su}(2)$		[4: E_{7}]
8.	su(4)	$2 \cdot 6 \oplus 6 \cdot 4 \oplus 6 \cdot \overline{4}$	$=\mathrm{su}(3)$	$2 \cdot 3 \oplus 2 \cdot \overline{3}$	[4:E ${ }_{7}$]
9.	so(7)	$6 \cdot 8 \oplus 4.7$	$=G_{2}$	$4 \cdot 7$	[4: E_{7}]
10.	so(8)	$6 \cdot 8 \oplus 4 \cdot 8^{\prime} \oplus 2 \cdot 8^{\prime \prime}$	$=\mathrm{so}(7)$	$6 \cdot 8$	[4: E_{7}]
11.	so(8)	$6 \cdot 8 \oplus 6 \cdot 8^{\prime}$	$=G_{2}$		$\left[4: E_{7}\right] \oplus\left[4: E_{7}\right]$
12.	sp(2)	$6 \cdot 5$	$=\mathrm{su}(2)$		[4: sp(3) $\oplus \mathrm{su}(2)]$
13.	sp(2)	$4.4 \oplus 4.5$	$=\mathrm{su}(2)$	$3 \cdot 2$	[4 : sp(3) $\oplus \mathrm{su}(2)]$
14.	su(4)	$\mathbf{1 0} \oplus \overline{\mathbf{1 0}} \oplus 2 \cdot \mathbf{4} \oplus 2 \cdot \overline{4}$	$=\mathrm{su}(3)$	$3 \oplus \overline{3}$	[4 : sp(3) $\oplus \mathrm{su}(2)$]
15.	su(3)	$6 \cdot 3 \oplus 6 \cdot \overline{3}$	$=\mathrm{su}(2)$	$2 \cdot 2$	[3: E_{6}]
16.	su(4)	$4 \cdot 6 \oplus 4 \cdot 4 \oplus 4 \cdot \overline{4}$	$=\mathrm{sp}(2)$	$6 \cdot 4$	[3: E_{6}]
17.	su(3)	$\mathbf{3} \oplus \overline{\mathbf{3}} \oplus \mathbf{6} \oplus \overline{\mathbf{6}}$	$=\mathrm{su}(2)$	$n \cdot 2$	[$3: \mathfrak{h}$]

- predicted dualities with one marginal operator

Examples of Duality and Results (2 Marginal Operators)

- predicted dualities with two marginal operators

Examples of Duality and Results (New SCFT's)

d	\mathfrak{h}	$k_{\mathfrak{h}}$	$3 / 2 \cdot k_{R}$	$48 \cdot a$	\mathbb{Z}_{2} anomaly?
6	E_{8}	12	124	190	no
6	$\operatorname{sp}(5)$	7	98	164	yes
4	E_{7}	8	76	118	no
4	$\mathrm{sp}(3) \oplus \operatorname{su}(2)$	$5 \oplus 8$	58	100	yes \oplus no
3	E_{6}	6	52	82	no
3	$2 \leq \operatorname{rank}(\mathfrak{h}) \leq 6$	$(8-n) / \mathrm{I}_{\text {su(2) }} \rightarrow \mathfrak{h}$	$38-2 n$	$68-2 n$	$?$

- From arguments found in 0712.2028 we can restrict $\operatorname{rank}(\mathfrak{h})=2$ which requires $n=2$ in order to match the flavor symmetries.
- The flavor central charges, $k_{\mathfrak{h}}$, were confirmed for E_{6}, E_{7}, and E_{8} through an F-theory calculation by Aharony and Tachikawa in 0711.4532 .

IV Seiberg-Witten Theory

The physics is encoded by:

- The Seiberg-Witten curve:

$$
y^{2}=x^{3}+f\left(u, m_{i}\right) x+g\left(u, m_{i}\right)
$$

- and the Seiberg-Witten 1-form: $\lambda_{S W}$ $\partial_{u} \lambda_{S W}=\frac{\mathrm{d} x}{y}+\partial_{x}(\star) \mathrm{d} x$.

The charged states of the theory are encoded by:

- $u(1)$ charges of a physical state are given by the homology class of a cycle, $\gamma=n_{e}[\alpha]+n_{m}[\beta]$ (when $m_{i}=0$).
- These states have central charge, $\mathbf{Z}=\oint_{\gamma} \lambda_{S W}$.

Seiberg-Witten Theory(Singularities)

The singularities of the Seiberg-Witten curve:

- are located at $\Delta=4 \cdot f^{3}+27 \cdot g^{2}=0$.
- If $m_{i}=0$ then $\Delta \sim u^{n}$.
- The singularities physically correspond to a breakdown of the low-energy description \Rightarrow charged states are becoming massless at this point in moduli space.

Seiberg-Witten Theory (Singularities with $m_{i}=0$)

Seiberg-Witten Theory $\left(m_{i} \neq 0\right)$

- When mass parameters are turned on they appear in the curve in the form of invariants of the weyl group of the flavor symmetry.
- $\Delta=u^{n}+P_{D(u)}\left(\left\{m_{i}\right\}\right) u^{n-1}+\ldots+P_{n D(u)}\left(\left\{m_{i}\right\}\right)$
- The factorization of Δ is related to the flavor symmetry group through the fact that different flavor symmetries \leftrightarrow different factorizations of Δ.

Seiberg-Witten Theory (Singularities with $m_{i} \neq 0$)

V The Kodaira Classification

- Kodaira classified the degenerations of holomorphic families of elliptic curves over one variable, u.
- The classification is of singularities that do not degenerate the holomorphic 1-form at the singularity.
- Fixing the holomorphic 1 -form, $\omega=\frac{\mathrm{d} x}{y}$, and requiring the singularities occur as $u \rightarrow 0$ specifies the curves exactly up to overall rescalings of u.

The Kodaira Classification

Recall:

- $y^{2}=x^{3}+f(u) x+g(u)$
- $\partial_{u} \lambda_{S W}=\frac{\mathrm{d} x}{y}+\partial_{x}(\star) \mathrm{d} x$
- $\mathbf{Z}=\oint_{\gamma} \lambda_{S W}$

It is easy to reproduce Kodaira's classification by a little algebra. For details see sections 2.2 \& 2.3 of hep-th/0504070 by Philip Argyres, Michael Crescimanno, Alfred Shapere, and JRW.

The Kodaira Classification

name	curve	$\Delta_{x} \propto$	$D(u)$	$D(x)$
E_{8}	$y^{2}=x^{3}+2 u^{5}$	u^{10}	6	10
E_{7}	$y^{2}=x^{3}+u^{3} x$	u^{9}	4	6
E_{6}	$y^{2}=x^{3}+u^{4}$	u^{8}	3	4
D_{4}	$y^{2}=x^{3}+3 \tau u^{2} x+2 u^{3}$	$u^{6}\left(\tau^{3}+1\right)$	2	2
H_{3}	$y^{2}=x^{3}+u^{2}$	u^{4}	$3 / 2$	1
H_{2}	$y^{2}=x^{3}+u x$	u^{3}	$4 / 3$	$2 / 3$
H_{1}	$y^{2}=x^{3}+u$	u^{2}	$6 / 5$	$2 / 5$
$D_{n>4}$	$y^{2}=x^{3}+3 u x^{2}+4 \Lambda^{-2(n-4)} u^{n-1}$	$u^{n+2}\left(1+\Lambda^{-2(n-4)} u^{n-4}\right)$	2	2
$A_{n \geq 0}$	$y^{2}=(x-1)\left(x^{2}+\wedge^{-(n+1)} u^{n+1}\right)$	$u^{n+1}\left(1+\wedge^{-(n+1)} u^{n+1}\right)$	1	0

- The result is two infinite series and seven "exceptional" curves.
- \wedge is the UV strong coupling scale and τ is the marginal gauge coupling.

The Kodaira Classification(Complex Deformations)

- The general mass deformations of these curves correspond to complex structure deformations that are subleading singularities as $u \rightarrow$ 0.

		\mathfrak{f}
E_{8}	$y^{2}=x^{3}+x\left(M_{2} u^{3}+M_{8} u^{2}+M_{14} u+M_{20}\right)+\left(2 u^{5}+M_{12} u^{3}+M_{18} u^{2}+M_{24} u+M_{30}\right)$	E_{8}
E_{7}	$y^{2}=x^{3}+x\left(u^{3}+M_{8} u+M_{12}\right)+\left(M_{2} u^{4}+M_{6} u^{3}+M_{10} u^{2}+M_{14} u+M_{18}\right)$	E_{7}
E_{6}	$y^{2}=x^{3}+x\left(M_{2} u^{2}+M_{5} u+M_{8}\right)+\left(u^{4}+M_{6} u^{2}+M_{9} u+M_{12}\right)$	E_{6}
D_{4}	$y^{2}=x^{3}+x\left(3 \tau u^{2}+M_{2} u+M_{4}\right)+\left(2 u^{3}+M_{4} u+M_{6}\right)$	so(8)
H_{3}	$y^{2}=x^{3}+x\left(M_{1 / 2} u+M_{2}\right)+\left(u^{2}+M_{3}\right)$	$\mathrm{u}(3)$
H_{2}	$y^{2}=x^{3}+x(u)+\left(M_{2 / 3} u+M_{2}\right)$	$\mathrm{u}(2)$
H_{1}	$y^{2}=x^{3}+x\left(M_{4 / 5}\right)+(u)$	$\mathrm{u}(1)$
$D_{n>4}$	$y^{2}=x^{3}+3 u x^{2}+\Lambda^{-(n-4)} \widetilde{M}_{n} x+4 \wedge^{-2(n-4)}\left(u^{n-1}+M_{2} u^{n-2}+\cdots+M_{2 n-2}\right)$	$\operatorname{so(2n)}$
$A_{n \geq 0}$	$y^{2}=(x-1)\left(x^{2}+\Lambda^{-(n+1)}\left[u^{n+1}+M_{2} u^{n-1}+M_{3} u^{n-2}+\cdots+M_{n+1}\right]\right)$	$\operatorname{su}(n+1)$

Kodaira Classification(The $A_{n>0}$ series)

- The curve shown corresponds to a $u(1)$ gauge theory with $n+1$ hypermultiplets all of the same charge, ± 1.
- The beta function determines the form of the singularity. Let there be n_{a} equal mass hypermultiplets with charge $\pm r_{a}$ then $b=\Sigma_{a} n_{a} r_{a}^{2}$.
- $b=n+1 \rightarrow A_{n}$ singularity.
- $b=\Sigma_{a} n_{a} r_{a}^{2} \rightarrow \oplus_{a} \mathbf{u}\left(n_{a}\right)$ flavor symmetry.
- Since $b>0$ these theories are all IR free.
- This is an example of the theme, singularity \Leftrightarrow gauge group.

The Kodaira Classification(The D_{n} series)

- The curve (for $n>4$) written corresponds to an su(2) gauge theory with $2 n$ half-hypers in the fundamental representation $\Rightarrow b=2(n-$ 4).
- Again $b>0$ so all these theories are IR free.
- There are two types of representations for su(2), the real $2 \mathbf{r}+1$ and the pseudoreal 2 s .
- To avoid anomalies we must have $2 n_{r}$ of each real representation and any number m_{s} of the pseudoreal such that $\frac{1}{3} \sum_{s} m_{s} s\left(4 s^{2}-1\right)$ is even.
- $b=\frac{4}{3} \sum_{r} n_{r} r(r+1)(2 r+1)+\frac{1}{3} \Sigma_{s} m_{s} s\left(4 s^{2}-1\right)-8$
- The flavor symmetry that corresponds to this value of the beta function is $\oplus_{r} \mathrm{sp}\left(n_{r}\right) \oplus_{s} \mathrm{so}\left(m_{s}\right)$.

The Kodaira Classification(Vanishing beta function)
There are two ways to make $b=0$ for the su(2) beta function.

- The first case is $m_{1}=8$ and all other zero. This has a flavor symmetry of so(8).
- This curve is the fully mass deformed D_{4} curve.
- The second case is $n_{1}=1$ and all other zero. This has a flavor symmetry of $\mathrm{sp}(1)$ and enhances the susy to $N=4$.
- The curve for the second case is $y^{2}=\Pi_{i}\left(x-e_{i} u-e_{i}^{2} M_{2}\right)$.
- $\Delta=\prod_{i<j}\left(e_{i}-e_{j}\right)^{2}\left(u+\left(e_{i}+e_{j}\right) M_{2}\right)^{2}$

The Kodaira Classification(Asymptotically free (or AF) theories)
These come from looking at su(2) gauge theories with $b<0$.

- If we put in only fundamental matter: $b=m_{1}-8$.
- m_{1} is the number of half-hypers and to avoid anomalies m_{1} must be even $\Rightarrow m_{1}=2,4,6$.
- When all the masses are taken to be the same we get the $H_{1,2,3}$ mass deformed curves, respectively.

The Kodaira Classification ($E_{6,7,8}$ mass deformations)
The $E_{6,7,8}$ curves correspond to strongly interacting fixed points.

- There existence was suggested from stringy constructions.
- The maximal mass deformations were worked out by Minahan and Nemeschansky in:
Nuclear Physics B 482 (1996) 142-152 and
Nuclear Physics B 489 (1997) 24-46.
- Evidence for the existence of new mass deformations was found by Philip Argyres \& JRW in 0712.2028.

VI Central Charges and Curves

Shapere and Tachikawa 0804.1957

The twisted version of Seiberg-Witten theory relates the anomalies and central charges to:

- The mass dimension of the vev on moduli space,
- the \# of neutral hypermultiplets on moduli space and
- the \# of singular points of the Seiberg-Witten curve.

Central Charges and Curves (Twisted PI)
$\int[\mathrm{d} u][\mathrm{d} q] A^{\chi} B^{\sigma} C^{n} \mathrm{e}^{-S_{\text {low-energy }}}$

- χ is the Euler characteristic.
- σ is the signature.
- n is an instanton number.
- $A^{2}=\operatorname{det}\left[\frac{\partial u_{i}}{\partial a_{j}}\right]$
- $B^{8}=\operatorname{Radical}[\Delta]$

Central Charges and Curves (master equations)

- The scaling behavior of the measure determines the R-charge of the states becoming massless at a singularity.
- The normalization is: $R(\star)=2 \cdot D(\star)$.
- $48 \cdot a=12 \cdot R(A)+8 \cdot R(B)+10 \cdot r+2 \cdot \mathrm{~h}$
- $24 \cdot c=8 \cdot R(B)+4 \cdot r+2 \cdot \mathrm{~h}$
- $4(2 \cdot a-c)=2 \cdot R(A)+r=\sum_{i=1}^{r} 2 \cdot\left(d_{i}-1\right)+r=\sum_{i=1}^{r}\left(2 \cdot d_{i}-1\right)$
$r \equiv$ the complex dimension of moduli space
$\mathrm{h} \equiv$ the \# of massless neutral hypermultiplets

Central Charges and Curves $(r=1)$

- $R(A)=d-1$
- $R(B)=\frac{1}{4} \cdot Z \cdot d$
- $Z \equiv$ The \# of singular points of the Seiberg-Witten curve.
- $24 \cdot c=2 \cdot Z \cdot d+4+2 \cdot h$
- $k_{\mathfrak{h}}=2 \cdot d-\mathrm{h}$

Central Charges and Curves(the unknown solution)

- $15=3 \cdot Z+h$
- $\frac{6}{I_{\mathrm{su}(2) \hookrightarrow \mathfrak{h}}}=6-h$
- The only rank 2 Lie Algebras are su(2) $\oplus \mathrm{su}(2)$, $\mathrm{su}(3), \mathrm{sp}(2)$, and G_{2}

Central Charges and Curves (Results)

d	\mathfrak{h}	Z	$2 \cdot \mathrm{~h}$	rep.'s
6	E_{8}	10	0	-
6	$\operatorname{sp}(5)$	7	10	$\mathbf{1 0}(\mathrm{~s})$
4	E_{7}	9	0	-
4	$\operatorname{sp}(3) \oplus \operatorname{su}(2)$	6	$(6,0)$	$\mathbf{6} \oplus \mathbf{1}(\mathrm{s})$
3	E_{6}	8	0	-
3	$\operatorname{rank}(\mathfrak{h})=2$	4,5	6,0	$?$

Since there are no neutral hypermultiplets on the LHS of the equivalence \Rightarrow the neutral hypermultiplets on the RHS must be charged under the flavor symmetry.

VII \mathbb{Z}_{2}-obstruction Revisited

- There is a \mathbb{Z}_{2}-obstruction for the $\operatorname{sp}(5)$ and $\operatorname{sp}(3)$ factors.
- This obstruction comes from the neutral hypermultiplet charged in a pseudoreal representation.
- Consider our old example in this new light:

$$
\begin{aligned}
& G_{2} \mathrm{w} / 8 \cdot \mathbf{7} \simeq \operatorname{su}(2) \mathrm{w} /(2 \oplus \mathrm{SCFT}[6: \mathrm{sp}(5)]) \\
& \mathrm{su}(2) \oplus \operatorname{sp}(4) \subset \operatorname{sp}(5) \\
& (\mathbf{2}, \mathbf{1}) \oplus(\mathbf{1}, \mathbf{8})=\mathbf{1 0}
\end{aligned}
$$

VIII Constructing New Seiberg-Witten Curves

- The work of Shapere and Tachikawa specifies possible forms of the discriminant of the Seiberg-Witten curves.
- The discriminants are determined by partitioning the total order of the singularity at $m_{i}=0$ into a Z-tuple of integers.

Constructing New Seiberg-Witten Curves

There are 4 singular points and 8 singularities.

- $\Delta \sim(u+\ldots)^{5}\left(u^{3}+\ldots\right)$
- $\Delta \sim(u+\ldots)^{4}(u+\ldots)^{2}\left(u^{2}+\ldots\right)$
- $\Delta \sim(u+\ldots)^{3}(u+\ldots)\left(u^{2}+\ldots\right)^{2}$
- $\Delta \sim\left(u^{2}+\ldots\right)^{3}\left(u^{2}+\ldots\right)$
- $\Delta \sim\left(u^{4}+\ldots\right)^{2}$

A systematic search for su(3) reveals 2 solutions. We need to carryout a systematic search for $\mathrm{su}(2) \oplus \mathrm{su}(2), G_{2}$, and $\mathrm{sp}(2)$.

Constructing New Seiberg-Witten Curves ($1^{\text {st }}$ consistent su(3) solution)

- $y^{2}=x^{3}+3 N_{2} x\left[u^{2}+(1+\nu) N_{2}^{3}+N_{3}^{2}\right]+\left[u^{4}+u^{2}\left((1+2 \nu) N_{2}^{3}+2 N_{3}^{2}\right)+\right.$ $\left.\nu(1+\nu) N_{2}^{6}+(1+2 \nu) N_{2}^{3} N_{3}^{2}+N_{3}^{4}\right]$
- $\Delta=-27\left[u^{2}+(1+\nu) N_{2}^{3}+N_{3}^{2}\right]^{2}\left[u^{2}+(2+\nu) N_{2}^{3}+N_{3}^{2}\right]^{2}$
- Upon constructing the SW 1-form for this curve we find that it is impossible.

Constructing New Seiberg-Witten Curves (2 $2^{\text {nd }}$ consistent su(3) solution)

- $y^{2}=x^{3}+u\left[3 N_{2} x\left(u-4 N_{3}\right)+u^{3}-12 u^{2} N_{3}-u\left(N_{2}^{3}-48 N_{3}^{2}\right)-64 N_{3}^{3}\right]$
- $\Delta=-27 u^{2}\left[u^{3}-12 u^{2} N_{3}+u\left(N_{2}^{3}+48 N_{3}^{2}\right)-64 N_{3}^{3}\right]^{2}$
- When we compute the SW 1-form we find that it is identical zero.

Therefore this is not a valid solution.

Constructing New Seiberg-Witten Curves

There are 5 singular points and 8 singularities.

- $\Delta \sim(u+\ldots)^{4}\left(u^{4}+\ldots\right)$
- $\Delta \sim(u+\ldots)^{3}(u+\ldots)^{2}\left(u^{3}+\ldots\right)$
- $\Delta \sim\left(u^{3}+\ldots\right)^{2}\left(u^{2}+\ldots\right)$

We need to carryout a systematic search for $\operatorname{su}(2) \oplus \operatorname{su}(2), \operatorname{su}(3), G_{2}$, and $\mathrm{sp}(2)$.

Constructing New Seiberg-Witten Curves $(\mathrm{sp}(3) \oplus \mathrm{su}(2))$

There are 6 singular points and 9 singularities.

- $\Delta \sim(u+\ldots)^{4}\left(u^{5}+\ldots\right)$
- $\Delta \sim(u+\ldots)^{3}(u+\ldots)^{2}\left(u^{4}+\ldots\right)$
- $\Delta \sim\left(u^{3}+\ldots\right)^{2}\left(u^{3}+\ldots\right)$

A systematic search reduces the problem to solving on the order of 800 polynomial relationships amongst 160 unknowns.

Constructing New Seiberg-Witten Curves (sp(5))

There are 7 singular points and 10 singularities

- $\Delta \sim(u+\ldots)^{4}\left(u^{6}+\ldots\right)$
- $\Delta \sim(u+\ldots)^{3}(u+\ldots)^{2}\left(u^{5}+\ldots\right)$
- $\Delta \sim\left(u^{3}+\ldots\right)^{2}\left(u^{4}+\ldots\right)$

A systematic search was not attempted for this case because of the outcome found on the previous slide.

IX Isogenies

An isogeny is a many-to-one holomorphic map that preserves the holomorphic 1-form. There are three traditional presentations of elliptic curves which are related by isogenies.

- Legendre: $\eta^{2}=\xi^{3}+f \xi+g$
- Jacobi: $y^{2}=x^{4}+\alpha x^{2}+\beta$
- Hessian: $\gamma=y^{3}+\delta x y+x^{3}$

Where $f, g, \alpha, \beta, \gamma$, and δ are all functions of u.

Isogenies(2-isogeny)

The map from the Jacobi form to the Legendre form is a 2-isogeny.

- $x=\left(\xi-\frac{1}{3} \alpha\right)^{\frac{1}{2}}$
- $y=\eta\left(\xi-\frac{1}{3} \alpha\right)^{-\frac{1}{2}}$
- $\Delta=\beta^{2}\left(\alpha^{2}-4 \beta\right)$
- The condition for a curve to have a 2-isogeny is that $D(\beta)=k D(u)$ where $k \in \mathbb{Z}^{+}$.

The H_{2}, D_{4}, and E_{7} curves have a 2-isogenous form. The H_{2} isogenous curve can only have a u(1) flavor symmetry.

Isogenies(2-isogeny of D_{4})

- $\alpha=\tau u+M_{2}$
- $\beta=u^{2}+M_{4}$
- $\Delta=\left(u^{2}+M_{4}\right)^{2}\left(\left(\tau^{2}-4\right) u^{2}+2 \tau M_{2} u+\left(M_{2}^{2}-4 M_{4}\right)\right)$
- If we take the special case $M_{4}=\frac{1}{4-\tau^{2}} M_{2}^{2}$ then we get

$$
\Delta=\left(\tau^{2}-4\right)\left(u+\frac{\tau}{\tau^{2}-4} M_{2}\right)^{2}\left(u-\left(\tau^{2}-4\right)^{-\frac{1}{2}} M_{2}\right)^{2}\left(u+\left(\tau^{2}-4\right)^{-\frac{1}{2}} M_{2}\right)^{2}
$$

This is the same discriminant as the $N=4$ solution.

Isogenies(2-isogeny of E_{7})

- $\alpha=M_{2} u+M_{6}$
- $\beta=u^{3}+M_{8} u+M_{12}$
- By comparing the dimensions of the complex parameters to the dimensions of the Casimirs of Lie Algebras the maximal flavor symmetry is F_{4}.
- A systematic computation of the SW 1-form still needs to be performed to see what are the possible flavor symmetries.

Isogenies(3-isogeny)

The map from the Hessian form to the Legendre form is a 3 -isogeny.

- $x=-\left(\xi-\frac{1}{12} \delta^{2}\right)\left(\eta+\frac{1}{2}\left(\delta \xi-\frac{1}{12} \delta^{3}+\gamma\right)\right)^{-\frac{1}{3}}$
- $y=\left(\eta+\frac{1}{2}\left(\delta \xi-\frac{1}{12} \delta^{3}+\gamma\right)\right)^{\frac{1}{3}}$
- $\Delta=\frac{1}{16} \gamma^{3}\left(\delta^{3}-27 \gamma\right)$
- The condition for a curve to have a 3-isogeny is the same as a for a 2-isogeny $D(\gamma)=k D(u)$ where $k \in \mathbb{Z}^{+}$.

The H_{3} and E_{6} curves have a 3-isogenous form. The H_{3} isogenous curve can only have a u(1) flavor symmetry.

Isogenies(3-isogeny of E_{6})

- $\delta=M_{2}$
- $\gamma=u^{2}+M_{6}$
- By explicitly computing the Seiberg-Witten 1-form we find that the flavor symmetry of this curve is G_{2}.
- The discriminant has $Z=4$ but it is hard to see how 6 neutral half-hypers could fit into a representation of G_{2}.
- Try to construct Seiberg-Witten curves for the $\mathrm{sp}(3) \oplus \operatorname{su}(2)$ and $\mathrm{sp}(5)$ flavor symmetries. Systematic searches are plagued with technical difficulties.
- Carryout the remaining systematic searches for the rank 2 flavor symmetry solutions of the E_{6} singularity.
- Try to determine the Seiberg-Witten 1-forms and flavor symmetries for the supposed F_{4} mass deformation of the E_{7} singularity.
- Try to better understand the relationship between isogenies and submaximal mass deformations.

