Argyres-Seiberg Duality and New SCFT's

John Wittig w/ Philip Argyres and Paul Esposito

Outline

- I Argyres-Seiberg Duality
- II Criteria For Duality
- **III** Examples of Duality and Results
- **IV** Review of Seiberg-Witten Theory
- V The Kodaira Classification
- VI Central Charges and Seiberg-Witten Curves
- **VII** \mathbb{Z}_2 -Obstruction Revisited

VIII Constructing New Seiberg-Witten Curves

IX Isogenies

X Future Work

I Argyres-Seiberg Duality

Philip Argyres & Nathan Seiberg 0711.0054

 $\mathfrak{g}[\{d_i\}] \quad \mathsf{w}/ \quad \mathbf{r} \simeq \widetilde{\mathfrak{g}}[\{\widetilde{d}_i\}] \quad \mathsf{w}/ \quad (\widetilde{\mathbf{r}} \oplus \mathsf{SCFT}[d:\mathfrak{h}])$

- \bullet LHS: There is a gauge group $\mathfrak g$ with matter charged in representations $\mathbf r.$
- RHS: There is a rank 1 SCFT with mass dimension of the Coulomb branch moduli d and flavor symmetry \mathfrak{h} . Then $\tilde{\mathfrak{g}} \subset \mathfrak{h}$ is gauged with matter charged in representations $\tilde{\mathbf{r}}$.

II Criteria for Duality

Philip Argyres & JRW 0712.2028

- The spectrum of dimensions of Coulomb branch vevs: $\{d_i\} = \{\tilde{d}_i\} \cup \{d\}.$
- The flavor symmetry algebras: $f = \tilde{f} \oplus H$.
- The beta function from weakly gauging the flavor symmetry: $T(r) = T(\widetilde{r}) + k_{\mathfrak{h}} \cdot I_{\mathsf{H} \hookrightarrow \mathfrak{h}}.$
- The number of marginal couplings: $2 \cdot T(\tilde{\mathfrak{g}}) = T(\tilde{r}) + k_{\mathfrak{h}} \cdot I_{\tilde{\mathfrak{g}} \hookrightarrow \mathfrak{h}}.$

Criteria for Duality(cont'd)

- The contribution to the $u(1)_R$ central charge (for the SCFT): $3/2 \cdot k_R = 24 \cdot c = 4 \cdot (|\mathfrak{g}| - |\tilde{\mathfrak{g}}|) + (|\mathbf{r}| - |\tilde{\mathbf{r}}|).$
- The contribution to the *a* conformal anomaly (for the SCFT): $48 \cdot a = 10 \cdot (|\mathfrak{g}| - |\tilde{\mathfrak{g}}|) + (|\mathbf{r}| - |\tilde{\mathbf{r}}|).$
- The existence of a global $\mathbb{Z}_2\text{-obstruction}$ to gauging the flavor symmetry.

Criteria for Duality (a and c anomalies)

• In Lagrangian theories, the *a* and *c* anomalies can be computed by t' Hooft anomaly matching:

$$4 \cdot (2 \cdot a - c) = |\mathfrak{g}| = \sum_i (2 \cdot d_i - 1).$$

- If we look back at the criteria the SCFT satisfies a similar relation: $4 \cdot (2 \cdot a - c) = (2 \cdot d - 1).$
- Shapere and Tachikawa have given a proof that this formula holds for a large class of N = 2 SCFT's in 0804.1957.

Criteria for Duality (\mathbb{Z}_2 -obstruction)

E. Witten, An su(2) Anomaly, Phys.Lett.B117:324-3278,1982

 $G_2 \text{ w/ } 8 \cdot 7 \simeq \text{su}(2) \text{ w/ } (2 \oplus \text{SCFT}[6:\text{sp}(5)])$

- LHS: The 7 of G_2 is real \Rightarrow the flavor symmetry is sp(4) when the sp(4) is gauged there is a \mathbb{Z}_2 -obstruction because the 8 is pseudoreal.
- RHS:The su(2) has an anomaly related to the single $2 \Rightarrow$ sp(5) must posses a \mathbb{Z}_2 -obstruction to gauging in order to cancel this since the LHS is anomaly free \Rightarrow this gives sp(4) a \mathbb{Z}_2 -obstruction since $I_{f \hookrightarrow sp(5)} = 1$ for f either su(2) or sp(4).

III Examples of Duality and Results (1 Marginal Operator)

	\mathfrak{g} w/	r	=	$\widetilde{\mathfrak{g}}$ w/	$\widetilde{\mathbf{r}}$ \oplus	SCFT	$[d:\mathfrak{h}]$
1.	sp(3)	$14 \oplus 11 \cdot 6$	=	sp(2)			[6 : <i>E</i> ₈]
2.	su(6)	$old 20 \oplus old 15 \oplus \overline{old 15} \oplus old 5 \cdot old 6 \oplus old 5 \cdot old 6$	=	su(5)	${f 5}\oplus {f \overline{5}}\oplus {f 10}$	$\oplus \overline{f 10}$	[6 : <i>E</i> ₈]
3.	so(12)	$3\cdot32\oplus32^\prime\oplus4\cdot12$	=	so(11)	$3\cdot 32$		$[6:E_8]$
4.	G_2	$8 \cdot 7$	=	su(2)	2		[6 : sp(5)]
5.	so(7)	$4 \cdot 8 \oplus 6 \cdot 7$	=	sp(2)	$5\cdot 4$		[6 : sp(5)]
6.	su(6)	$f 21 \oplus \overline{21} \oplus 20 \oplus 6 \oplus \overline{6}$	=	su(5)	${f 10} \oplus {f \overline{10}}$		[6 : sp(5)]
7.	sp(2)	$12 \cdot 4$	=	su(2)			$[4:E_7]$
8.	su(4)	$2\cdot6\oplus6\cdot4\oplus6\cdot\overline{4}$	=	su(3)	$2 \cdot 3 \oplus 2 \cdot \overline{3}$		[4 : <i>E</i> ₇]
9.	so(7)	$6 \cdot 8 \oplus 4 \cdot 7$	=	G_2	$4 \cdot 7$		$[4:E_7]$
10.	so(8)	$6\cdot 8\oplus 4\cdot 8'\oplus 2\cdot 8''$	=	so(7)	$6 \cdot 8$		[4 : <i>E</i> ₇]
11.	so(8)	$6\cdot 8\oplus 6\cdot 8'$	=	G_2			$[4:E_7] \oplus [4:E_7]$
12.	sp(2)	$6 \cdot 5$	=	su(2)			$[4:sp(3)\oplus su(2)]$
13.	sp(2)	$4\cdot 4 \oplus 4\cdot 5$	=	su(2)	$3\cdot 2$		$[4:sp(3)\oplus su(2)]$
14.	su(4)	$oldsymbol{10} \oplus \overline{oldsymbol{10}} \oplus oldsymbol{2} \cdot oldsymbol{4} \oplus oldsymbol{2} \cdot oldsymbol{\overline{4}}$	=	su(3)	${f 3}\oplus \overline{f 3}$		$[4:sp(3) \oplus su(2)]$
15.	su(3)	$6\cdot3\oplus6\cdot\overline{3}$	=	su(2)	$2\cdot 2$		[3 : <i>E</i> ₆]
16.	su(4)	$4\cdot6\oplus4\cdot4\oplus4\cdot\overline{4}$	=	sp(2)	$6 \cdot 4$		[3 : <i>E</i> ₆]
17.	su(3)	$3 \oplus \overline{3} \oplus 6 \oplus \overline{6}$	=	su(2)	$n\cdot 2$		[3 : h]

• predicted dualities with one marginal operator

Examples of Duality and Results (2 Marginal Operators)

	g w/	r	=	$\widetilde{\mathfrak{g}}$ w/	$\widetilde{\mathbf{r}}$	\oplus	$SCFT[d:\mathfrak{h}]$
18.	$su(2) \oplus su(3)$	$2{\cdot}(2,1)\oplus(2,3{\oplus}\overline{3})\oplus4{\cdot}(1,3{\oplus}\overline{3})$	=	$su(2) \oplus su(2)$	2.(2	$\overline{(,1)\oplus 2\cdot}$	$(1,2)$ [3 : E_6]
19.	$su(2) \oplus sp(2)$	$2\cdot(2,4)\oplus 8\cdot(1,4)$	=	$su(2) \oplus su(2)$			$[4:E_7]$
20.	$su(2) \oplus sp(2)$	$3\cdot(2,1)\oplus(2,5)\oplus4\cdot(1,5)$	=	$su(2) \oplus su(2)$	$3 \cdot (2$,1) [4 :	sp(3)⊕su(2)]
21.	${\sf su}(2)\oplus G_2$	$(2,1)\oplus (2,7)\oplus 6{\cdot}(1,7)$	=	$su(2) \oplus su(2)$	(2, 1	\oplus (1,2	2) [6 : sp(5)]
22.	$su(3) \oplus su(3)$	$2{\cdot}(\overline{3},\overline{\overline{3}})\oplus 2{\cdot}(\overline{\overline{3}},\overline{3})$	=	$su(2) \oplus su(3)$	$2 \cdot (2$,1)	[3 : <i>E</i> ₆]
23.	$su(3) \oplus su(3)$	$(3\oplus\overline{3},3\oplus\overline{3})$	=	$su(2) \oplus su(3)$	$2 \cdot (2$,1)	[3 : <i>E</i> ₆]
24.	$su(3) \oplus su(3)$	$3{\cdot}(3{\oplus}\overline{3},1)\oplus(3,\overline{3})\oplus(\overline{3},3)$	=	$su(2) \oplus su(3)$	$2 \cdot (2$,1)	[3 : <i>E</i> ₆]
		\oplus 3 \cdot (1, 3 \oplus	<u>3</u>)		\in	∋ 3·(1,3∈	$ \oplus\overline{3})$
25.	$su(3) \oplus sp(2)$	$(3\oplus\overline{3},1)\oplus(3\oplus\overline{3},5)$	=	$su(2) \oplus sp(2)$	$2 \cdot (2$,1)	[3 : <i>E</i> ₆]
			=	$su(3) \oplus su(2)$	$(3\oplus$	$(\bar{3},1)[4:$	sp(3)⊕su(2)]
26.	$su(3) \oplus sp(2)$	$2{\cdot}(3{\oplus}\overline{3},1)\oplus(3{\oplus}\overline{3},4)\oplus 6{\cdot}(1,4)$	=	$su(2) \oplus sp(2)$	$2 \cdot (2$	$,1)\oplus 6\cdot$	$(1,4)$ [3 : E_6]
			=	$su(3) \oplus su(2)$	2·(3	$\oplus \overline{3}, 1)$	$[4:E_7]$
27.	$sp(2) \oplus sp(2)$	$2{\cdot}(5,1)\oplus(5,4)\oplus7{\cdot}(1,4)$	=	$su(2) \oplus sp(2)$	$7 \cdot (1$,4) [4:	sp(3)⊕su(2)]
			=	$sp(2) \oplus su(2)$	$2 \cdot (5)$,1)	$[4:E_7]$
28.	$sp(2) \oplus sp(2)$	$4{\cdot}(4,1)\oplus 2{\cdot}(4,4)\oplus 4{\cdot}(1,4)$	=	$su(2) \oplus sp(2)$	$4 \cdot (1$,4)	$[4:E_7]$
29.	$sp(2) \oplus G_2$	$5{\cdot}(4,1)\oplus(4,7)\oplus4{\cdot}(1,7)$	=	$su(2) \oplus G_2$	$4 \cdot (1$,7)	[4 : <i>E</i> ₇]
			=	$sp(2) \oplus su(2)$	$5 \cdot (4$	$,1)\oplus(1$,2)[6:sp(5)]

• predicted dualities with two marginal operators

Examples of Duality and Results (New SCFT's)

d	h	$k_{\mathfrak{h}}$	$3/2 \cdot k_R$	$48 \cdot a$	\mathbb{Z}_2 anomaly?	
6	E ₈	12	124	190	no	
6	sp(5)	7	98	164	yes	
4	E_7	8	76	118	no	
4	$sp(3) \oplus su(2)$	$5\oplus 8$	58	100	yes \oplus no	
3	E_6	6	52	82	no	
3	$2 \leq \operatorname{rank}(\mathfrak{h}) \leq 6$	$(8-n)/I_{su(2) \hookrightarrow \mathfrak{h}}$	38-2 <i>n</i>	68-2 <i>n</i>	?	

- From arguments found in 0712.2028 we can restrict rank(\mathfrak{h}) = 2 which requires n = 2 in order to match the flavor symmetries.
- The flavor central charges, $k_{\mathfrak{h}}$, were confirmed for E_6 , E_7 , and E_8 through an F-theory calculation by Aharony and Tachikawa in 0711.4532.

IV Seiberg-Witten Theory

The physics is encoded by:

- The Seiberg-Witten curve: $y^2 = x^3 + f(u, m_i)x + g(u, m_i)$
- and the Seiberg-Witten 1-form: λ_{SW} $\partial_u \lambda_{SW} = \frac{dx}{y} + \partial_x(\star) dx.$

The charged states of the theory are encoded by:

- u(1) charges of a physical state are given by the homology class of a cycle, $\gamma = n_e[\alpha] + n_m[\beta]$ (when $m_i = 0$).
- These states have central charge, $Z = \oint_{\gamma} \lambda_{SW}$.

Seiberg-Witten Theory(Singularities)

The singularities of the Seiberg-Witten curve:

• are located at $\Delta = 4 \cdot f^3 + 27 \cdot g^2 = 0$.

• If
$$m_i = 0$$
 then $\Delta \sim u^n$.

 The singularities physically correspond to a breakdown of the low-energy description ⇒ charged states are becoming massless at this point in moduli space. Seiberg-Witten Theory(Singularities with $m_i = 0$)

Seiberg-Witten Theory $(m_i \neq 0)$

• When mass parameters are turned on they appear in the curve in the form of invariants of the weyl group of the flavor symmetry.

•
$$\Delta = u^n + P_{D(u)}(\{m_i\})u^{n-1} + \dots + P_{nD(u)}(\{m_i\})$$

• The factorization of Δ is related to the flavor symmetry group through the fact that different flavor symmetries \leftrightarrow different factorizations of Δ .

Seiberg-Witten Theory(Singularities with $m_i \neq 0$)

V The Kodaira Classification

- Kodaira classified the degenerations of holomorphic families of elliptic curves over one variable, *u*.
- The classification is of singularities that do not degenerate the holomorphic 1-form at the singularity.
- Fixing the holomorphic 1-form, $\omega = \frac{dx}{y}$, and requiring the singularities occur as $u \to 0$ specifies the curves exactly up to overall rescalings of u.

The Kodaira Classification

Recall:

•
$$y^2 = x^3 + f(u)x + g(u)$$

•
$$\partial_u \lambda_{SW} = \frac{\mathrm{d}x}{y} + \partial_x(\star) \mathrm{d}x$$

• Z =
$$\oint_{\gamma} \lambda_{SW}$$

It is easy to reproduce Kodaira's classification by a little algebra. For details see sections 2.2 & 2.3 of hep-th/0504070 by Philip Argyres, Michael Crescimanno, Alfred Shapere, and JRW.

The Kodaira Classification

name	curve	$\Delta_x \propto$	D(u)	D(x)	
E_8	$y^2 = x^3 + 2u^5$	u^{10}	6	10	
E_7	$y^2 = x^3 + u^3 x$	u^9	4	6	
E_6	$y^2 = x^3 + u^4$	u^8	3	4	
D_4	$y^2 = x^3 + 3\tau u^2 x + 2u^3$	$u^{6}(\tau^{3}+1)$	2	2	(1)
H_3	$y^2 = x^3 + u^2$	u^4	3/2	1	(1)
H_2	$y^2 = x^3 + ux$	u^3	4/3	2/3	
H_1	$y^2 = x^3 + u$	u^2	6/5	2/5	
$D_{n>4}$	$y^{2} = x^{3} + 3ux^{2} + 4\Lambda^{-2(n-4)}u^{n-1}$	$u^{n+2}(1 + \Lambda^{-2(n-4)}u^{n-4})$	2	2	
$A_{n\geq 0}$	$y^{2} = (x - 1)(x^{2} + \Lambda^{-(n+1)}u^{n+1})$	$u^{n+1}(1 + \Lambda^{-(n+1)}u^{n+1})$	1	0	

- The result is two infinite series and seven "exceptional" curves.
- A is the UV strong coupling scale and τ is the marginal gauge coupling.

The Kodaira Classification (Complex Deformations)

• The general mass deformations of these curves correspond to complex structure deformations that are subleading singularities as $u \rightarrow 0$.

Kodaira Classification(The $A_{n>0}$ series)

- The curve shown corresponds to a u(1) gauge theory with n + 1 hypermultiplets all of the same charge, ± 1 .
- The beta function determines the form of the singularity. Let there be n_a equal mass hypermultiplets with charge $\pm r_a$ then $b = \sum_a n_a r_a^2$.
- $b = n + 1 \rightarrow A_n$ singularity.
- $b = \sum_{a} n_{a} r_{a}^{2} \rightarrow \bigoplus_{a} u(n_{a})$ flavor symmetry.
- Since b > 0 these theories are all IR free.
- This is an example of the theme, singularity \Leftrightarrow gauge group.

The Kodaira Classification (The D_n series)

- The curve (for n > 4) written corresponds to an su(2) gauge theory with 2n half-hypers in the fundamental representation ⇒ b = 2(n 4).
- Again b > 0 so all these theories are IR free.
- There are two types of representations for su(2), the real 2r + 1 and the pseudoreal 2s.
- To avoid anomalies we must have $2n_r$ of each real representation and any number m_s of the pseudoreal such that $\frac{1}{3}\Sigma_s m_s s(4s^2 - 1)$ is even.

•
$$b = \frac{4}{3} \sum_{r} n_{r} r(r+1)(2r+1) + \frac{1}{3} \sum_{s} m_{s} s(4s^{2}-1) - 8$$

• The flavor symmetry that corresponds to this value of the beta function is $\bigoplus_r \operatorname{sp}(n_r) \oplus_s \operatorname{so}(m_s)$.

The Kodaira Classification(Vanishing beta function)

There are two ways to make b = 0 for the su(2) beta function.

- The first case is $m_1 = 8$ and all other zero. This has a flavor symmetry of so(8).
- This curve is the fully mass deformed D_4 curve.
- The second case is $n_1 = 1$ and all other zero. This has a flavor symmetry of sp(1) and enhances the susy to N = 4.
- The curve for the second case is $y^2 = \prod_i (x e_i u e_i^2 M_2)$.
- $\Delta = \prod_{i < j} (e_i e_j)^2 (u + (e_i + e_j)M_2)^2$

The Kodaira Classification(Asymptotically free (or AF) theories)

These come from looking at su(2) gauge theories with b < 0.

- If we put in only fundamental matter: $b = m_1 8$.
- m_1 is the number of half-hypers and to avoid anomalies m_1 must be even $\Rightarrow m_1 = 2, 4, 6$.
- When all the masses are taken to be the same we get the $H_{1,2,3}$ mass deformed curves, respectively.

The Kodaira Classification ($E_{6,7,8}$ mass deformations)

The $E_{6,7,8}$ curves correspond to strongly interacting fixed points.

- There existence was suggested from stringy constructions.
- The maximal mass deformations were worked out by Minahan and Nemeschansky in: Nuclear Physics B 482 (1996) 142-152 and Nuclear Physics B 489 (1997) 24-46.

• Evidence for the existence of new mass deformations was found by Philip Argyres & JRW in 0712.2028.

VI Central Charges and Curves

Shapere and Tachikawa 0804.1957

The twisted version of Seiberg-Witten theory relates the anomalies and central charges to:

- The mass dimension of the vev on moduli space,
- the # of neutral hypermultiplets on moduli space and
- the # of singular points of the Seiberg-Witten curve.

Central Charges and Curves (Twisted PI)

 $\int [du] [dq] A^{\chi} B^{\sigma} C^n e^{-S_{low-energy}}$

- χ is the Euler characteristic.
- σ is the signature.
- n is an instanton number.

•
$$A^2 = det[\frac{\partial u_i}{\partial a_j}]$$

• $B^8 = Radical[\Delta]$

Central Charges and Curves (master equations)

- The scaling behavior of the measure determines the R-charge of the states becoming massless at a singularity.
- The normalization is: $R(\star) = 2 \cdot D(\star)$.
- $48 \cdot a = 12 \cdot R(A) + 8 \cdot R(B) + 10 \cdot r + 2 \cdot h$
- $24 \cdot c = 8 \cdot R(B) + 4 \cdot r + 2 \cdot h$
- $4(2 \cdot a c) = 2 \cdot R(A) + r = \sum_{i=1}^{r} 2 \cdot (d_i 1) + r = \sum_{i=1}^{r} (2 \cdot d_i 1)$
- $r \equiv$ the complex dimension of moduli space

 $h\equiv$ the # of massless neutral hypermultiplets

Central Charges and Curves (r = 1)

- $\bullet \ R(A) = d 1$
- $R(B) = \frac{1}{4} \cdot Z \cdot d$
- $Z \equiv \text{The } \#$ of singular points of the Seiberg-Witten curve.
- $24 \cdot c = 2 \cdot Z \cdot d + 4 + 2 \cdot h$
- $k_{\mathfrak{h}} = 2 \cdot d \mathbf{h}$

Central Charges and Curves(the unknown solution)

• $15 = 3 \cdot Z + h$

•
$$\frac{6}{I_{su(2) \hookrightarrow \mathfrak{h}}} = 6 - h$$

• The only rank 2 Lie Algebras are su(2) \oplus su(2), su(3), sp(2), and ${\it G}_2$

Central Charges and Curves (Results)

d	\mathfrak{h}	Z	$2 \cdot h$	rep.'s	
6	E8	10	0	-	
6	sp(5)	7	10	10(s)	
4	E_7	9	0	-	
4	$sp(3) \oplus su(2)$	6	(6, 0)	$6\oplus 1(S)$	
3	E_{6}	8	0	-	
3	$rank(\mathfrak{h}) = 2$	4,5	6,0	?	

Since there are no neutral hypermultiplets on the LHS of the equivalence \Rightarrow the neutral hypermultiplets on the RHS must be charged under the flavor symmetry.

VII \mathbb{Z}_2 -obstruction Revisited

- There is a \mathbb{Z}_2 -obstruction for the sp(5) and sp(3) factors.
- This obstruction comes from the neutral hypermultiplet charged in a pseudoreal representation.
- Consider our old example in this new light:

VIII Constructing New Seiberg-Witten Curves

• The work of Shapere and Tachikawa specifies possible forms of the discriminant of the Seiberg-Witten curves.

• The discriminants are determined by partitioning the total order of the singularity at $m_i = 0$ into a Z-tuple of integers.

Constructing New Seiberg-Witten Curves

There are 4 singular points and 8 singularities.

•
$$\Delta \sim (u + ...)^5 (u^3 + ...)$$

•
$$\Delta \sim (u + ...)^4 (u + ...)^2 (u^2 + ...)$$

•
$$\Delta \sim (u + ...)^3 (u + ...) (u^2 + ...)^2$$

• $\Delta \sim (u^2 + ...)^3 (u^2 + ...)$

• $\Delta \sim (u^4 + ...)^2$

A systematic search for su(3) reveals 2 solutions. We need to carryout a systematic search for su(2) \oplus su(2), G_2 , and sp(2).

Constructing New Seiberg-Witten Curves $(1^{st} \text{ consistent su}(3) \text{ solution})$

• $y^2 = x^3 + 3N_2x[u^2 + (1+\nu)N_2^3 + N_3^2] + [u^4 + u^2((1+2\nu)N_2^3 + 2N_3^2) + \nu(1+\nu)N_2^6 + (1+2\nu)N_2^3N_3^2 + N_3^4]$

•
$$\Delta = -27[u^2 + (1 + \nu)N_2^3 + N_3^2]^2[u^2 + (2 + \nu)N_2^3 + N_3^2]^2$$

• Upon constructing the SW 1-form for this curve we find that it is impossible.

Constructing New Seiberg-Witten Curves $(2^{nd} \text{ consistent su}(3) \text{ solution})$

•
$$y^2 = x^3 + u[3N_2x(u - 4N_3) + u^3 - 12u^2N_3 - u(N_2^3 - 48N_3^2) - 64N_3^3]$$

•
$$\Delta = -27u^2[u^3 - 12u^2N_3 + u(N_2^3 + 48N_3^2) - 64N_3^3]^2$$

• When we compute the SW 1-form we find that it is identical zero. Therefore this is not a valid solution.

Constructing New Seiberg-Witten Curves

There are 5 singular points and 8 singularities.

•
$$\Delta \sim (u + ...)^4 (u^4 + ...)$$

•
$$\Delta \sim (u + ...)^3 (u + ...)^2 (u^3 + ...)$$

•
$$\Delta \sim (u^3 + ...)^2 (u^2 + ...)$$

We need to carryout a systematic search for $su(2) \oplus su(2)$, su(3), G_2 , and sp(2).

Constructing New Seiberg-Witten Curves $(sp(3) \oplus su(2))$

There are 6 singular points and 9 singularities.

•
$$\Delta \sim (u + ...)^4 (u^5 + ...)$$

•
$$\Delta \sim (u + ...)^3 (u + ...)^2 (u^4 + ...)$$

•
$$\Delta \sim (u^3 + ...)^2 (u^3 + ...)$$

A systematic search reduces the problem to solving on the order of 800 polynomial relationships amongst 160 unknowns.

Constructing New Seiberg-Witten Curves (sp(5))

There are 7 singular points and 10 singularities

•
$$\Delta \sim (u + ...)^4 (u^6 + ...)$$

•
$$\Delta \sim (u + ...)^3 (u + ...)^2 (u^5 + ...)$$

•
$$\Delta \sim (u^3 + ...)^2 (u^4 + ...)$$

A systematic search was not attempted for this case because of the outcome found on the previous slide.

IX Isogenies

An isogeny is a many-to-one holomorphic map that preserves the holomorphic 1-form. There are three traditional presentations of elliptic curves which are related by isogenies.

- Legendre: $\eta^2 = \xi^3 + f\xi + g$
- Jacobi: $y^2 = x^4 + \alpha x^2 + \beta$
- Hessian: $\gamma = y^3 + \delta xy + x^3$

Where f, g, α , β , γ , and δ are all functions of u.

Isogenies(2-isogeny)

The map from the Jacobi form to the Legendre form is a 2-isogeny.

•
$$x = (\xi - \frac{1}{3}\alpha)^{\frac{1}{2}}$$

•
$$y = \eta (\xi - \frac{1}{3}\alpha)^{-\frac{1}{2}}$$

•
$$\Delta = \beta^2 (\alpha^2 - 4\beta)$$

• The condition for a curve to have a 2-isogeny is that $D(\beta) = kD(u)$ where $k \in \mathbb{Z}^+$.

The H_2 , D_4 , and E_7 curves have a 2-isogenous form. The H_2 isogenous curve can only have a u(1) flavor symmetry.

Isogenies (2-isogeny of D_4)

- $\alpha = \tau u + M_2$
- $\beta = u^2 + M_4$

•
$$\Delta = (u^2 + M_4)^2 ((\tau^2 - 4)u^2 + 2\tau M_2 u + (M_2^2 - 4M_4))$$

• If we take the special case $M_4 = \frac{1}{4-\tau^2}M_2^2$ then we get

$$\Delta = (\tau^2 - 4)(u + \frac{\tau}{\tau^2 - 4}M_2)^2(u - (\tau^2 - 4)^{-\frac{1}{2}}M_2)^2(u + (\tau^2 - 4)^{-\frac{1}{2}}M_2)^2$$

This is the same discriminant as the N = 4 solution.

Isogenies (2-isogeny of E_7)

- $\alpha = M_2 u + M_6$
- $\beta = u^3 + M_8 u + M_{12}$
- By comparing the dimensions of the complex parameters to the dimensions of the Casimirs of Lie Algebras the maximal flavor symmetry is F_4 .
- A systematic computation of the SW 1-form still needs to be performed to see what are the possible flavor symmetries.

Isogenies(3-isogeny)

The map from the Hessian form to the Legendre form is a 3-isogeny.

•
$$x = -(\xi - \frac{1}{12}\delta^2)(\eta + \frac{1}{2}(\delta\xi - \frac{1}{12}\delta^3 + \gamma))^{-\frac{1}{3}}$$

•
$$y = (\eta + \frac{1}{2}(\delta\xi - \frac{1}{12}\delta^3 + \gamma))^{\frac{1}{3}}$$

•
$$\Delta = \frac{1}{16}\gamma^3(\delta^3 - 27\gamma)$$

• The condition for a curve to have a 3-isogeny is the same as a for a 2-isogeny $D(\gamma) = kD(u)$ where $k \in \mathbb{Z}^+$.

The H_3 and E_6 curves have a 3-isogenous form. The H_3 isogenous curve can only have a u(1) flavor symmetry.

Isogenies (3-isogeny of E_6)

- $\delta = M_2$
- $\gamma = u^2 + M_6$
- By explicitly computing the Seiberg-Witten 1-form we find that the flavor symmetry of this curve is G_2 .
- The discriminant has Z = 4 but it is hard to see how 6 neutral half-hypers could fit into a representation of G_2 .

 Try to construct Seiberg-Witten curves for the sp(3) ⊕ su(2) and sp(5) flavor symmetries. Systematic searches are plagued with technical difficulties.

• Carryout the remaining systematic searches for the rank 2 flavor symmetry solutions of the E_6 singularity.

• Try to determine the Seiberg-Witten 1-forms and flavor symmetries for the supposed F_4 mass deformation of the E_7 singularity.

• Try to better understand the relationship between isogenies and submaximal mass deformations.